

TWO	STYLES	OF	DATABASE

DEVELOPMENT

TWO	STYLES	OF

DATABASE	DEVELOPMENT
Describe	the	opposition	between	an	atomic,	procedural	and	row-oriented	style	versus	a	holistic,	SQL	and	data-

set	oriented	style,	within	a	relational	database

STEFAN	ARDELEANU

Copyright	©	2015	Stefan	Ardeleanu

All	rights	reserved.

ISBN-10:	1493796976

ISBN-13:	9781493796977

Library	of	Congress	Control	Number:	2015914541

CreateSpace	Independent	Publishing	Platform,

North	Charleston,	South	Carolina

The	application	developer	…	sees	himself	as	a	rider	on	the	row.

But	the	row	is	not	a	horse,	but	a	donkey!

TABLE	OF	CONTENTS
Introduction	and	Intended	Audience

A	story	about	table	aliases,	a	vision	about	an	inferior	skill,	how	to
drink	wine	mixed	with	water	in	France!

Writing	correctly	is	critical	for	the	quality	of	our	software

A	basic	terminology

All	types	of	software	developers!

The	same	styles	of	development	were	used	for	many	years	in	the
user	interface	and	in	the	database!

The	application	developer	–	the	main	target	of	this	book

Database	developers	and	students	in	IT	universities	are	especially
targeted	too

The	two	sections	of	the	book

Chapter	1			The	concept	of	style

The	style	of	development	is	dynamic.	We	need	to	recognize	it
first!

The	most	common	styles	of	programming

The	database	development	starts	with	the	table	design

Do	we	already	start	the	development?

Are	we	ready	for	SQL?

Chapter	2			SQL	-	the	beauty	and	the	beast!

How	can	a	query	language	be	so	important	for	a	style	of
development?

What	is	SQL?	What	is	not	SQL?

What	about	programming?	Is	there	such	a	thing	like	database
programming?

Programming	is	a	practical	activity!

Should	we	write	in	the	database	in	a	certain	way?

The	SQL	shop	metaphor!

An	example	of	bad	practice!

Chapter	3			The	holistic	vision	against	the	data

The	concept	of	data	set

The	holistic	approach	versus	the	atomic	approach	–	an
introduction

A	different	model	–does	this	model	deserve	to	be	promoted
indeed?

Performance	and	portability	-	two	advantages	for	the	holistic
approach.

Visual	development	versus	SQL	development

Chapter	4			What	to	choose:	the	data	set	or	the	data	row?

Choosing	the	level	of	detail:	the	set	versus	the	row!

Performance	is	poor.	Performance	completely	blocked	in	any
tentative	of	improvement.

Database	programming	means	query,	query	and	query	all	the
time!

Let’s	go	back	to	the	SQL	shop!	One	more	time,	please!

The	use	of	scalar	functions	–a	typical	accessory	for	the	atomic
approach!

Debugging	is	so	simple!	The	code	is	much	simpler	and	readable!

What	is	a	database	developer	nowadays?

It’s	practice	time!

Chapter	5			Data	transfer	paradigm,	the	first	set	of	examples

The	exercises,	the	context,	the	goals,	ways	to	illustrate	the	two
approaches!

Holistic	versus	atomic:	incrementally	update	a	target

Chapter	6			Others	atomic	features	used	in	excess

The	use	of	scalar	functions	–	a	challenge	to	the	set-based
approach

A	simple	query!

Chapter	7			Writing	SQL	versus	writing	procedurally,	other	holistic	methods

Writing	SQL	versus	writing	procedurally,	another	impediment!
An	example	of	update!

Writing	SQL	versus	writing	procedurally:	the	power	of	union	in
the	holistic	approach!

Embedded	SQL	versus	dynamic	SQL	–	another	dilemma!

Others	holistic	solutions:	the	temporary	table,	explicit	or	implicit
like	with	a	clause

Chapter	8			Row	triggers.	When	should	we	follow	the	atomic	way?	Some	final	reflections
and	thoughts!

The	use	of	row	triggers:	another	common	atomic	solution	used	in

excess

The	atomic	approach	should	be	used,	whenever	is	necessary!

Some	final	reflections	and	thoughts

The	concept	of	SQL	template

Writing	horizontally	or	vertically:	a	decision	to	be	taken!

The	specific	software	application	should	be	implemented
holistically

The	SQL	itself	can	be	better	and	better!

Performance,	oh	performance!	This	book	is	for	you!

A	specific	data	migration	software	application	can	be	written	in
pure	SQL	more	often	than	you	expect!

B

INTRODUCTION	AND	INTENDED	AUDIENCE
A	STORY	ABOUT	TABLE	ALIASES,	A	VISION
ABOUT	AN	INFERIOR	SKILL,	HOW	TO	DRINK
WINE	MIXED	WITH	WATER	IN	FRANCE!

eing	 an	 IT	 contractor	means	working	mostly	 project	 based.	 The	 project	 can	 be	 a
short-term	 based	 or	 long	 term.	 For	 a	 short-term	 project,	 you	 need	 to	 work	 on	 a

specific	 task	 in	 a	 team	 of	 developers,	 you	 need	 to	 solve	 a	 punctual	 problem	 and,	 after
doing	it,	you	are	done	with	the	project!	The	team	of	developers	will	continue	their	work
and	you	will	search	for	a	new	project	and	challenge.

I	want	to	share	some	thoughts	from	one	of	my	experiences	of	that	type.

Some	time	ago,	I	was	in	a	project	where	most	of	the	members	were	Java	developers,
very	 good	 professionals	 with	 many	 years	 of	 experience.	 They	 developed	 a	 document
management	 system,	 metadata	 based,	 written	 almost	 exclusively	 in	 Java.	 The	 database
was	Oracle.	The	manager	and	their	technical	leader	invited	me	to	do	some	Oracle	staff,	to
solve	 some	 database-specific	 tasks	 for	 the	 project.	 All	 the	 team	 members	 were	 pure
application	developers	and	no	one	had	too	much	expertise	with	databases.	Still,	in	the	end,
everything	was	transform	in	SQL	but	no	one	cared	too	much	about	that.	The	developers
were	good	artists	and	the	design	was	very	sophisticated,	written	after	the	good	principles
of	Object	oriented	programing.

One	day,	I	was	in	the	office	and	listened	to	some	of	their	discussions	about	a	certain
SQL	statement.	They	asked	me	some	questions,	which	I	did	not	understand.	I	went	over	to
their	 desks	 and	 looked	 it	 up.	 I	was	 still	 confused	 because	 the	SQL	 statement	was	 quite
basic.	A	self-join	was	required.	I	added	the	self-join	and	everything	worked	perfectly	well.
The	team	members	were	amazed!	They	were	not	aware	about	the	fact	that	a	table	can	be
referenced	many	times	in	a	join	using	various	aliases.	They	did	not	know	what	a	self-join
is!

After	a	while,	during	a	break,	we	were	having	some	discussions	with	the	same	team
of	Java	developers;	they	were	very	confused	and	surprised	by	the	fact	that,	the	same	way
they	 spent	 their	 entire	 career	 doing	 Java,	 I	 spent	 my	 entire	 career	 doing	 database
development	and	especially	doing	SQL.	SQL	is	so	simple,	your	task	is	such	a	trivial	task,
you	have	a	much	easier	life	than	ours,	they	said!	We	fight	with	such	complicated	concepts
to	apply	and	you	just	manipulate	rows	and	columns	in	your	simple	query	language!	That	is
not	fair,	they	thought	without	saying	it	aloud.

In	another	train	of	thoughts,	I	was	in	France	with	two	of	my	good	colleagues,	Clark
and	Marjorie.	Clark	is	American,	my	manager	for	a	long	time	and	a	very	good	friend,	and
Marjorie	is	a	nice	and	elegant	French	woman,	my	colleague	in	support	in	the	French	area.
We	were	in	a	café	and	we	were	chatting.	Among	other	staff,	we	ordered	for	some	wine.	In
addition,	 I	 asked	 for	 some	 mineral	 water.	 In	 my	 country,	 some	 people	 have	 the	 habit
sometimes	to	mix	sparkling	water	with	wine.	I	tried	to	ask	Marjorie	what	she	thinks	about
that.	Of	course,	 I	knew	 the	answer.	To	any	French	people,	mixing	water	with	wine	 is	 a
blasphemy.	Being	in	France,	being	the	quest,	I	understood	and	left	the	water	where	it	was,

apart	from	the	glass	of	wine!

What	is	the	connection	between	these	three,	shared	memories?	Being	an	application
developer	does	not	make	you	SQL	independent,	in	most	of	the	cases.	Whether	you	like	it
or	not,	you	will	be	 in	 contact	with	SQL,	 sometimes	more	or	 sometimes	 less!	The	 same
way	any	database	developer	knows	the	basics	of	structured	programming,	normally	most
of	 the	 application	 developers	 know	 the	 basics	 of	 SQL.	 There	 are	 no	 such	 things	 like
superior	or	inferior	languages,	but	useful	and	compatible	according	to	the	business.	When
you	are	 in	 the	country	of	 relational	databases,	 even	 if	you	are	an	application	developer,
you	should	learn	how	to	write	the	fair	SQL.

WRITING	CORRECTLY	IS	CRITICAL	FOR
THE	QUALITY	OF	OUR	SOFTWARE
The	quality	of	a	software	application	is	proportional	with	many	things	and	it	is	difficult	to
measure	and	qualify	all	the	factors	that	contribute	to	a	good	quality.	I	believe	that	one	of
the	most	important	aspects	is	 the	way	we	write	our	code,	our	style	of	development.	It	 is
hard	to	say	what	it	means	to	write	correctly	in	the	context	of	software	development.	It	is	a
degree	of	subjectivity	 involved	 in	any	 judgment	of	 this	 type.	However,	 I	believe	 that	no
one	can	argue	with	me	when	I	say	that	the	style	of	development	and	the	way	we	write	our
code	is	proportional	with	the	quality	of	the	software	we	build.

I	am	a	database	developer	with	many	years	of	experience.	During	this	period	spent
inside	 relational	 databases,	 I	 gathered	 enough	 experience	 to	 be	 able	 to	 explain	 that	 the
database	area	requires	a	certain	and	distinct	style	of	development.

This	 is	 the	 topic	of	 this	book:	how	 to	write	 code	 inside	a	 relational	database	 in	a
certain	manner,	distinct	and	specific,	which	may	not	be	exactly	a	common	style.

There	 are	 thousands	 and	millions	 of	 lines	 of	 codes	 in	 the	 databases	 all	 over	 the
world	 that	are	written	 in	a	 total	 inadequate	manner	and	 these	 lines	of	codes	cause	many
performance	issues	in	many	places.	All	these	performance	issues	can	be	avoided	with	one
condition:	the	programmers	should	try	to	understand	that	a	certain	style	of	development	is
required	in	a	relational	database.

How	 to	write	 correctly	 inside	 a	 relational	database	 is	 the	main	 topic	of	my	book.
This	 is	 a	 book	 about	 a	 certain	 style	 of	 development	within	 a	 relational	 database.	 It	 is	 a
book	about	database	programming	and	a	book	about	what	is	the	fair	way	of	writing	inside
a	database.	When	I	say	database	programming,	I	mean	mostly	SQL,	considering	that	this
is	what	database	programming	really	means.	This	is	a	book	about	performance.	Is	a	book
about	 a	 minimal	 performance	 that	 can	 be	 achieved	 in	 any	 database	 if	 the	 style	 of
development	 is	 the	 appropriate	 one,	 according	 to	 some	 standard	 of	 development	 that	 I
want	to	share	with	you	later!

The	 style	 of	 the	 book	 is	 not	 academic	 although	 it	 is	 a	 book	 about	 database
programming.	I	am	a	practical	person	and	I	consider	that	programming	is	part	of	our	lives.
I	also	believe	that	programmers	and	IT	professionals	are	among	us	and	are	ordinary	people
that	deserve	also	a	common	style	of	argumentation	and	not	only	an	academic	style.	There
are	 thousands	 of	 libraries	with	 academic	 papers	 for	 IT	 professionals	 and	 students.	 This
book	does	not	fall	into	that	category.

A	BASIC	TERMINOLOGY
Due	 to	 the	direct	 style	of	 the	book,	on	one	hand,	and	 to	 the	 fact	 that	 this	book	 is	about
database	development	on	another,	which	means	 that	 it	 is	 still	 a	 technical	book,	 I	would
like	to	define	some	basic	terminology.	The	Internet	is	full	of	classifications	and	manuals,
courses	 and	documentation,	 libraries	 and	practical	 examples,	 the	 concepts	 are	 explained
and	 re-explained	 by	 specialists.	 I	 want	 to	 be	 consistent	 and	 to	 avoid	 any	 possible
confusion	so	I	clarify	some	keywords	used	in	this	paper.

I	understand	by	data-oriented	software	application	that	kind	of	software	application
composed	by	at	least	one	user	interface,	graphical	or	not,	and	the	database	behind.	When	I
say	database	I	am	referring	mostly	to	a	relational	database.	One	of	the	main	goals	for	any
software	 application	 of	 this	 type	 is	 to	 allow	 data	 access	 in	 the	 database	 via	 the	 user
interface.	The	end	users	read	and	write	from	the	database,	via	 the	user	 interface.	This	 is
what	 I	 call	 a	classic	data-oriented	software	 system.	 I	will	use	 the	name	classic	 software
application,	 for	 simplicity.	 The	 focus	 is	 on	 the	 database,	 so	 the	 topic	 of	 the	 software
application	is	always	the	database	section.

Another	 type	of	 data-oriented	 software	 application	 is	 that	 kind	of	 application	 that
has	the	purpose	to	transferring	data	between	classic	systems.	Medium	or	large	companies
will	possess	many	classic	software	applications.	Every	software	system	of	 that	 type	will
have	its	own	purpose,	its	own	database	and	will	cover	one	part	of	the	business	or	another.
Another	type	of	data-oriented	software	application	is	the	software	system	where	the	goal
is	 to	 move	 data	 between	 two	 or	 many	 classic	 systems.	 I	 call	 this	 a	 specific	 software
application.	In	most	of	the	cases,	there	is	no	user	interface	and	no	classic	end	users.	One	or
many	 classic	 systems	 are	 the	 targets	 and	 the	 one	 or	many	other	 classic	 systems	 are	 the
sources.	That	kind	of	 specific	 system	can	be	anything	 like	a	Replication	system,	a	Data
Migration	 system	 or	 an	 Extract	 Transform	 and	 Load	 system	 (ETL)	 part	 of	 a	 data
warehouse	system.

Please	be	aware	of	the	distinction	classic-specific.	One	is	to	develop	in	a	database	in
a	classic	system	and	another	one	is	 to	develop	in	a	specific	system	and	maybe	my	main
interest	in	this	book	is	related	to	the	variety	of	specific	systems	where	a	lot	of	developers
are	working	in	the	same	manner	they	are	working	in	classic	systems.

Regarding	the	terminology,	this	book	is	full	of	examples	and	exercises	mostly	from
two	database	 systems.	To	 eliminate	 any	 confusions	 and	 ambiguities,	 dear	 reader,	 please
read	Oracle	database	as	Oracle	and	Microsoft	SQL	Server	as	SQL	Server.

ALL	TYPES	OF	SOFTWARE	DEVELOPERS!
I	am	a	SQL	developer.	In	other	words,	I	am	a	classic	database	developer.	For	many	years
in	the	past,	I	have	felt	bad	about	that,	 thinking	that	the	only	pure	and	authentic	database
specialists	are	the	database	administrators.	With	all	the	respect	for	the	work	of	a	DBA,	and
for	their	important	responsibilities,	there	were	always	other	database	people	on	the	market
apart	 from	 them!	 For	 a	 long	 time	 in	 the	 past,	 I	wrongly	 thought	 that,	 being	 a	 database
developer,	which	means	a	SQL	developer,	is	not	a	path	by	itself	but	a	skill	among	others,
an	insufficient	path	that	could	be	associated	with	something	else.	People	were	searching
for	 developers	 in	 different	 combinations	 like	 Java	 plus	 PL	 SQL,	 or	 like	 C#	 and	 SQL
Server.	 The	 SQL	 programming	 and	 the	 classic	 database	 development	 was	 considered
mainly	as	an	addition	to	application	development	and	still	is	this	way	in	many	cases.

Being	 a	 software	 developer	might	mean	 knowing	 how	 to	 develop	 both:	 database
and	 non-database	 layers.	 Sometimes	 we	 may	 be	 in	 the	 position	 of	 doing	 both	 and
sometimes	we	do	an	exclusive	work.

“He	 is	 a	 very	 good	 Java	 developer,	 you	 will	 see!”	 ”He	 will	 participate	 in	 your
project	and	he	will	 finally	build	value	 for	 the	customers	with	his	 skills!”	“He	has	many
years	of	experience	with	C	and	almost	as	many	with	C#.	He	is	a	very	good	programmer!”
On	the	other	hand,	even	more,	Joe	is	an	object-oriented	language	theorist	and	his	code	is	a
model	for	your	Java	or	C#	programmers.	These	kinds	of	statements	were	and	still	are	very
common	and	application	developers	were	and	continue	to	be	the	most	common	types	of
developers	on	the	market.	For	example,	working	in	a	web-based	application,	developing	a
web	interface	is	an	extremely	appreciated	occupation	nowadays,	and	the	market	is	full	of
good	 web	 developers	 being	 able	 to	 satisfy	 the	 requirements	 and	 build	 extensive	 and
scalable	applications.

What	is	happening	with	the	database?	For	many	years	in	the	past,	after	the	90’s,	the
only	 authentic	 database	 people	 were	 the	 database	 administrators.	 To	 be	 a	 DBA	 is	 a
difficult	 task	 and	 involves	 enormous	 responsibilities!	 If	 something	 goes	 wrong	 in	 the
factory	and	the	inventories	fail,	the	DBA	must	be	there	and	must	try	to	find	a	solution	for
the	work	to	continue.	He	is	the	one	who	takes	care	of	the	database	and	its	optimal	use	by
end	 users:	 he	 is	 the	 one	who	 is	 leading	 all	 the	 things	 in	 production.	 It	 is	 far	 from	my
intentions	 to	minimize	 the	 role	of	a	DBA:	his	presence	 is	critical	and	necessary	 for	any
production	 system.	 In	 large	enterprises,	 there	are	armies	of	database	administrators	who
take	care	of	the	databases.

What	about	the	ones	that	effectively	built	the	databases	as	part	of	the	data-oriented
software	 application?	 For	many	 years,	 the	market	 neglected	 them,	 even	 if	 some	 people
will	 perhaps	 disagree	 with	 this	 idea.	 I	 admit	 there	 is	 a	 degree	 of	 subjectivism	 in	 this
statement	that	I	am	not	afraid	to	recognize,	you	can	consider	it	as	a	personal	point	of	view.
The	 database	 developers	 should	 have	 received	 more	 recognition	 in	 the	 past	 and	 even
today.	Just	by	looking	at	the	jobs	descriptions	in	the	past,	before	BI	and	Data	warehouse
explosions,	 looking	at	 the	 requirements	 for	people	within	 the	 IT	market,	you	will	 rarely
see	 explicit	 requirements	 for	 database	 developers.	 In	 the	 recent	 years,	 there	 was	 a	 big
change	and	now	you	can	see	a	larger	variety	of	requests	for	database	specialists,	but	this
change	 came	 due	 to	 the	 explosion	 of	 reporting	 systems	 and	 analytics.	 For	 example,	 an
ETL	specialist	is	a	kind	of	highly	specialized	database	developer,	and	not	an	ordinary	SQL

or	database	developer!

THE	SAME	STYLES	OF	DEVELOPMENT
WERE	USED	FOR	MANY	YEARS	IN	THE	USER
INTERFACE	AND	IN	THE	DATABASE!
This	situation	is	visible	very	clear	in	the	projects	and	in	the	heart	of	the	software	industry,
in	the	programmers’	offices.	The	software	developers,	the	programmers	think	in	patterns
of	structured	and	object-oriented	programming	and	apply	 these	principles	everywhere	 in
their	 code,	 including	 the	 databases.	 Because,	 very	 often,	 people	 do	 not	 recognize	 the
database	 developer	 as	 a	 distinct	 type	 of	 specialist,	 and	 because	 they	 do	 not	 accept	 a
distinct	pattern	of	development	 for	him,	 the	databases	 is	often	build	 in	 an	 inappropriate
style.	This	is	still	happening	very	often,	more	often	than	you	can	imagine!

Unfortunately,	 sometimes	 there	 is	 still	 confusion	between	 two	different	 images	of
the	 language.	 I	 am	 referring	 to	 the	 confusion	 between	 the	 apparent	 simplicity	 of	 the
language	and	the	potential	huge	complexity	of	the	written	logic	with	this	language.	SQL	is
a	paradox	by	 itself;	you	may	 learn	 the	basics	and	understand	 the	 language	 in	one	week.
Still,	in	order	to	cover	the	entire	complexity	of	SQL	takes	almost	the	same	amount	of	time
necessary	 for	 becoming	 a	 very	 good	 Java	programmer,	 for	 example.	To	become	 a	SQL
expert	is	as	difficult	as	becoming	a	Java	expert.	Because	of	this	confusion,	the	knowledge
of	SQL	was	 included	 in	 the	section	others	 for	many	years.	Software	companies	want	 to
hire	 Java	 or	 C#	 programmers	 with	 SQL	 knowledge,	 and	 they	 often	 consider	 database
programming	a	kind	of	secondary	skill.	Very	often	application	developers	should	be	able
to	develop	everywhere:	in	the	user	interface	and	in	the	database,	and	they	worked	in	the
same	style	and	using	the	same	patterns.	These	patterns	are	extremely	suitable	for	the	user
interface	but	not	for	 the	database.	A	large	number	of	software	applications	are	using	the
same	unique	style,	the	classic	style	of	application	development	in	both	user	interface	and
database	section.

The	idea	of	having	a	distinct	style	of	programming	within	the	database,	distinct	in
comparison	with	the	existing	ones,	the	idea	of	using	a	different	style	of	development	in	the
database	exists	 for	some	years.	 I	can	say	 that	now	things	are	easily	changed	and	people
start	to	see	that	a	database	programmer	needs	to	write	code	differently.	I	was	very	happy
to	see	requirements	for	set	based	style	projects,	I	was	happy	to	see	explicit	requirements
for	a	database	programmer	and	an	explicit	request	for	a	non-application	developer.

In	 this	 book,	 I	 want	 to	 promote	 a	 certain	 style	 of	 development	 specific	 to	 the
database.	I	am	referring	to	SQL	development	in	particular	as	the	most	 important	 type	of
database	development.	The	SQL	programmer	is	critical	in	a	large	variety	of	projects	and	it
should	 not	 be	 necessarily	 specialized	 like	 me.	 A	 good	 programmer	 can	 be	 both	 an
application	 developer	 and	 a	 SQL	 programmer,	 with	 priority	 on	 one	 or	 another.	 I	 don’t
want	 to	say	 that	we	should	be	one	or	 the	other	and	I	accept	 that	 in	most	of	 the	projects
with	classic	software	applications	the	developers	can	do	both.	However,	if	the	programmer
writes	SQL	he	should	write	his	code	differently	than	Java	or	C	or	anything	else.	My	plan
is	to	describe	this	style	of	programing	in	opposition	with	the	typical	style	of	an	application
developer.	 I	 want	 to	 show	 that,	 in	 the	 database,	 a	 different	 style	 of	 development	 is
required.

THE	APPLICATION	DEVELOPER	–	THE
MAIN	TARGET	OF	THIS	BOOK
I	dare	to	say	that,	in	one	way	or	another,	this	book	is	for	everyone	to	a	certain	degree,	and
by	 everyone,	 of	 course	 I	 am	 referring	 to	 everyone	 interested	 in	 databases,	 especially	 in
relational	 databases.	 There	 are	 so	 many	 people	 involved	 in	 the	 database	 area	 like
programmers	of	all	 types,	business	analysts,	software	testers,	all	kinds	of	IT	consultants,
IT	project	managers,	IT	technical	leaders	and	the	list	may	continue.

Still,	 this	 book	 is	 especially	 for	 programmers.	 When	 I	 say	 programmers,	 I	 can
understand	 many	 things.	 The	 major	 category	 of	 programmers	 targeted	 in	 this	 book	 is
composed	by	the	variety	of	application	developers	like	Java	developers	or	C,	C++	or	C#
or	PHP	developers.	I	can	surely	state	that	this	is	the	most	important	category	of	software
developers	and	most	of	the	software	today	is	built	on	the	top	of	these	technologies	and	on
the	shoulders	of	these	developers.	These	developers	are	focused	in	their	classic	languages
and	 they	 are	 especially	 working	 at	 the	 user	 interface	 level.	 Many	 of	 them	 are	 good
practitioners	of	the	Object-oriented	model,	for	example,	and	they	know	how	to	apply	this
model	to	their	applications.	The	Object-oriented	model	is	a	complex	model	and	it	covers
many	 of	 our	 realities	 better	 than	 others	models.	 I	 offer	 a	 great	 sense	 of	 admiration	 and
respect	 for	 these	developers	and	I	believe	what	 they	are	doing	 is	great.	Still,	despite	 the
valuable	 skills	 that	 I	 recognize	with	 all	my	modesty	 and	 sympathy,	 I	 consider	 that	 this
book	might	be	useful	for	these	kinds	of	developers	in	the	first	instance.	The	book	is	not	for
all	of	them,	but	for	many	of	them!

Why	 is	 that?	 Because	 of	 a	 simple	 question:	 what	 about	 the	 database?	 Someone
might	say.

The	application	developer	can	decide:	I	do	not	want	 to	be	involved.	Alternatively,
he	can	choose:	I	want	a	minimal	involvement,	a	minimum	of	work	at	the	database	level.	I
am	an	application	developer	and	I	believe	working	in	the	database	is	something	else	than
what	I	am	regularly	doing!	Maybe	some	of	them	they	are	really	doing	this.

Still,	 even	 if	 the	 application	 developer	 questions	 himself	 about	 the	 possibility	 to
write	 inside	a	database,	 this	 is	 a	very	 rare	 situation.	Generally	 the	managers	 decide	 and
they	do	not	analyze	 too	carefully	all	 these	problems.	They	consider	 that	any	application
developer	 can	work	 in	 the	 database	 and	 do	 database	 development	 and	 they	 ignore	 how
they	are	doing	it.

The	managers	will	decide:	you	can	do	some	SQL	and	you	can	do	some	work	at	the
database	 level,	 is	 not	 a	 big	 deal!	 Consequently,	 the	 developer	will	 start	working	 in	 the
database	 right	 away	 without	 asking	 him:	 do	 I	 need	 to	 do	 anything	 differently?	 I	 am
moving	from	C#	into	Transact	SQL,	I	am	changing	all	the	time	and	write	code	from	Java
to	Oracle,	I	am	affecting	some	classes	and	afterwards	I	will	affect	some	tables	inside	some
store	procedures.	Do	I	need	to	do	anything	different?	This	question	should	be	addressed	to
the	 developers,	 but	 actually,	 in	 most	 of	 the	 cases	 no	 one	 really	 does	 that.	 Very	 often,
moving	 from	 the	 user	 interface	 to	 the	 database	 is	 not	 seen	 as	 a	 major	 change	 and	 the
application	developers	are	not	thinking	that	they	should	change	anything	in	the	way	they
write	their	code.	Unfortunately,	they	are	simply	programming	right	away	in	the	same	way
they	are	doing	it	at	the	application	level.

Some	application	developers	simply	ignore	any	difference,	they	are	not	aware	of	the
distinctions	 because	 they	 consider	 the	 same	 model	 applies	 to	 the	 database.	 Others	 are
judging	 SQL	 language,	 see	 its	 apparent	 simplicity,	 and	 consider	 that	 nothing	 should	 be
said	to	them.	Many	developers	try	to	impose	their	standard	from	the	user	 interface	level
and	move	 it	 to	 the	 database.	 This	 book	 is	written	 especially	 for	 application	 developers
that,	 due	 to	 various	 reasons,	 subjective	 or	 objective,	 are	 using	 the	 same	 style	 of
development	in	the	database	as	the	one	in	the	user	interface.	I	consider	they	should	change
something	in	the	way	they	write	in	the	database.	This	book	is	mainly	for	them.

DATABASE	DEVELOPERS	AND	STUDENTS	IN	IT	UNIVERSITIES	ARE
ESPECIALLY	TARGETED	TOO
This	book	addresses	to	database	developers	too.	Normally,	a	true	database	developer	will
be	aware	of	the	style	described	in	this	book	and	will	write	code	in	the	manner	I	promote.
He	still	can	get	some	clarifications	and	clear	his	mind.	Still,	other	database	developers	are
actually	 closer	 to	 application	 development	 even	 if	 they	 believe	 they	 are	 database
developers.	 I	 am	 referring	 to	 those	 developers	 linked	 to	 the	 procedural	 language	 of	 a
vendor	 or	 another	 like	PL	SQL	developers,	 for	 example.	These	will	work	more	 like	 an
application	developer	than	like	a	database	developer.	A	true	database	developer	is	a	SQL
developer,	 in	 my	 opinion.	 The	 book	 is	 dedicated	 to	 this	 mixed	 database	 application
developers.

The	book	is	also	dedicated	to	students	in	IT	universities	and	to	young	programmers
who	are	just	starting	their	work	in	the	field	of	software	development.	I	believe	that	 they
should	be	aware	that	a	different	style	and	a	different	vision	are	required	when	coding	in
the	 database	 versus	 coding	 at	 the	 user	 interface	 level.	 In	 the	 IT	 universities,	 these
distinctions	 are	 not	 generally	 made	 with	 enough	 clarity	 and,	 very	 often,	 when	 doing
effective	development	on	both	sides,	 they	are	using	 the	same	style	and	 the	same	vision.
The	consequence	 is	 that	 the	database	 is	always	sacrificed	because	 the	vision	 is	good	for
the	user	interfaces	but	not	optimal	for	the	database.

On	 the	 other	 hand,	 considering	 the	 topic,	 I	 can	 affirm	 that	 this	 book	 is	 not
exclusively	dedicated	to	programmers.	This	book	can	be	read	by	business	analysts,	by	IT
consultants	apart	from	programmers,	any	type	of	professionals	that	are	commonly	dealing
with	data.	This	book	addresses	 the	managers	 that	 lead	 IT	data-oriented	projects.	Almost
everyone	is	dealing	with	data	nowadays	in	one	way	or	another.

An	IT	company,	where	the	goal	is	to	create	and	maintain	software,	to	build	all	kind
of	 software	 applications	 for	 one	 business	 or	 another,	 means	 infinitely	 more	 than
programmers.	 Any	 software	 application	 is	 related	 to	 a	 certain	 business	 that	 wants	 to
model.	So	the	software	applications	are	mainly	surrounded	by	the	business	people	rather
than	 by	 programmers.	 People	 that	 know	 the	 business	 form	 the	 majority	 in	 a	 software
company	and	not	 the	programmers.	 It	 is	 like	a	big	ship	or	boat	where	 two	categories	of
people	 stay	 and	 live:	 the	 business	 people	 and	 the	 technical	 people	 like	 programmers,
DBA’s,	sys	admins	and	others.

The	business	people	are	 targeted	by	 this	book	 too,	even	 if	maybe	not	 in	 the	same
measure.	The	business	analysts,	 the	business	consultants,	 even	 the	business	 testers,	 they
are	all	not	so	technical,	but	some	of	them	are	strongly	involved	in	the	databases	at	various
levels.	This	book	is	for	them	too,	not	just	for	programmers.

To	conclude,	this	book	addresses	the	following	categories	of	persons,	in	the	order	of
importance	and	utility	for	each	category:

1.	 The	book	is	especially	for	the	application	developers	that	write	code	into
relational	databases	using	a	classic	style	of	development.

2.	 The	book	is	for	those	pseudo	database	developers	that	are	actually	more	like
application	developers	and	are	intensively	using	the	procedural	facilities	of	a

language	like	PL	SQL.
3.	 These	pages	are	also	for	true	database	developers,	who	are	actually	SQL

developers.	They	will	eventually	clear	their	minds	and	get	a	confirmation	of
what	they	are	doing.

4.	 The	book	is	for	students	from	IT	universities,	especially	computing,	computer
science	and	others.	I	hope	these	will	be	aware	from	the	beginning	that	the
database	is	something	else	and	will	be	warned	in	time	before	starting	effective
development.

5.	 The	book	is	for	the	young	programmers	that	start	their	work	now	in	the
software	industry.	I	hope	they	will	see	that	they	need	to	follow	a	different
approach	in	the	database	and	not	developer	in	the	same	manner	like	in	the	user
interface.

6.	 The	book	is	also	for	business	people	like	analysts	or	testers	that	are	dealing
with	data.	I	believe	is	good	for	them	to	be	familiarized	with	the	distinctions
between	the	two	styles	of	development.

7.	 Finally,	the	book	is	for	managers	and	technical	leaders	of	the	software	projects
where	the	database	is	a	critical	component.	They	are	taking	the	decisions	and	I
hope	that	some	of	them	will	try	to	give	more	importance	to	the	topic,	for	a
better	performance	of	their	software.

THE	TWO	SECTIONS	OF	THE	BOOK
The	book	 is	divided	 into	 two	 large	sections.	The	first	part	of	 the	book	 is	 the	conceptual
area.	I	wanted	to	explain	the	reason	for	the	two	styles	of	development	and	to	justify	why
we	need	a	different	style	when	we	are	inside	a	relational	database.	I	will	try	to	define	the
concept	of	the	style	of	development,	to	explain	why	this	is	such	a	critical	component	for	a
developer.

Considering	that	the	book	is	for	students	in	IT	universities	too,	I	have	some	sections
in	the	first	four	chapters	where	I	describe	some	basic	aspects	of	database	development	like
table	design	and	the	characteristics	of	SQL	language.	These	sections	are	also	required	for
the	sake	of	argumentation	but	can	be	ignored	by	experienced	database	developers,	readers
of	my	book.

The	goal	in	the	first	four	chapters	is	to	show	that	a	separate	style	of	development	is
required	in	a	relational	database.	This	style	of	development	is	revealed	during	the	book	by
the	 opposition	 with	 the	 classic	 or	 typical	 style	 of	 development	 used	 by	 most	 of	 the
application	developers.	The	 style	of	development	 that	 should	be	used	 in	 the	database	 is
holistic	and	set	based	by	opposition	with	the	atomic	style	and	row-oriented	used	by	many
application	developers.

The	last	four	chapters	of	the	book	are	highly	practical	and	are	meant	to	proof	of	the
concepts	revealed	in	the	first	part	of	the	book.	I	imagined	a	series	of	examples,	taken	from
two	 of	 the	 most	 popular	 database	 systems:	 Oracle	 and	 SQL	 Server.	 These	 examples
illustrate	 the	 two	 styles	 of	 development	 and	 show	 the	 differences.	 The	 practices	 are
described	and	I	am	not	afraid	to	state	that	my	goal	is	to	promote	the	holistic	and	set	based
style	of	development	against	the	atomic	and	row-	oriented	style	of	development	so	dear	to
most	of	the	application	developers.

I

Chapter	1

THE	CONCEPT	OF	STYLE
THE	STYLE	OF	DEVELOPMENT	IS	DYNAMIC.
WE	NEED	TO	RECOGNIZE	IT	FIRST!

know	 that	 I	 am	 taking	 a	 risk	 by	 approaching	 a	 somehow	 vague	 concept,	 like	 the
concept	of	style	of	development.	The	concept	of	style	is	not	a	scientific	notion	and	it

involves	 a	 certain	 degree	 of	 subjectivity.	 I	 can	 consider	 the	 concept	 of	 style	 of
development	 similar	 to	 the	 concept	 of	 development	 approach,	 but	 I	 prefer	 the
terminology	of	style	because	I	accept	the	degree	of	subjectivity	mentioned	above.

First,	 this	 book	 is	 not	 a	 scientific	 one.	 I	 am	 not	 a	 scientist.	 I	 am	 a	 database
programmer	who	developed	his	 style	of	development	by	working	 for	many	years	 in	 the
database	 under	 various	 systems	 like	Oracle,	 SQL	Server,	 IBM	DB2	 and	 others.	 I	 don’t
claim	to	reinvent	the	wheel	and	I	know	that	most	of	the	things	described	in	this	book	are
and	should	be	familiar	to	many	specialists,	especially	to	many	database	programmers.

SQL	is	such	a	common	language	that	anyone	who	would	say	something	new	about
it	might	be	regarded	with	curiosity	and	distrust.	There	are	many	books	and	papers	about
SQL,	 many	 things	 have	 been	 said	 and	 written	 on	 the	 subject,	 and	 most	 of	 all,	 many
software	 applications	 are	written	 in	 SQL.	 For	 sure	 SQL	 is,	 along	with	 some	 few	 other
languages,	in	the	top	of	popularity	and	usage.	The	things	are	clear	in	the	area.

Therefore,	this	book	is	not	a	book	about	SQL	in	the	sense	that	I	consider	something
new	 to	 describe	 about	 it.	What	 I	 want	 to	 talk	 about	 is	 the	 fact	 that	 writing	 SQL	 code
involves	 a	 certain	 style	 that	 is	 somehow	distinct	 from	 the	most	 common	 styles	 that	 are
used	in	others	languages.	Even	in	this	area,	the	things	are	becoming	clearer	during	the	last
years.	 I	 saw	 the	 tendencies	 and	 I	 know	 that,	 for	 example,	 the	 set-based	 approach	 is
becoming	more	and	more	required	in	the	software	market,	in	many	projects.	What	I	want
to	show	is	the	fact	that,	in	certain	situations,	the	software	developers	should	use	a	certain
style	 of	 programming.	 They	 should	 use	 a	 distinct	 style	 of	 development,	 specific	 to
database	 programming	 and	mostly	 for	 some	 specific	 types	 of	 software	 applications,	 not
the	 classic	 ones.	 I	 am	 mostly	 referring	 to	 replication	 systems,	 data	 migration	 systems,
Extract-Transform-Load	(ETL)	systems	or	any	type	of	application	that	has	the	purpose	of
moving	data	between	various	classic	software	systems.

In	 the	 theoretical	 approaches	 on	SQL,	 in	 the	multitude	 of	 courses	 that	 have	 been
written,	most	of	the	specialists	that	wrote	these	papers	are	trying	to	explain	the	syntaxes.
Of	course,	they	are	trying	to	describe	the	cases	in	which	one	is	supposed	to	use	one	certain
syntax	or	another.	They	are	trying	to	illustrate	the	use	of	SQL	using	a	variety	of	exercises.
They	explain	that	SQL	is	a	query	language,	so	any	SQL	course	is	mainly	dedicated	to	the
topic	 of	 querying.	 This	 is	 the	 main	 purpose	 of	 SQL:	 how	 to	 get	 access	 to	 data	 in	 the
relational	format.	I	consider	all	these	pretty	much	well	known.	I	intend	to	consider	more
aspects,	 for	example,	 the	fact	 that,	while	working	with	a	database	and	using	a	 relational
language	 like	 SQL,	 you	 should	 adopt	 a	 certain	 style	 of	 programming	which	 is	 not	 the

same	as	the	one	you	are	familiar	with,	as	an	application	developer.

The	 source	 of	 this	 book	 is	my	 experience	 and	 you	 can	 consider	 it	 as	 a	practical
guide.	That	is	why	I	prefer	to	use	the	rather	vague	concept	of	style	of	development	instead
of	 trying	 to	 use	 a	 more	 scientific	 concept.	 In	 my	 view,	 this	 style	 means	 the	 set–based
approach	but	even	more	than	that.	The	set-based	approach	that	I	am	promoting	here	is	just
the	most	important	characteristic	of	that	style.

In	another	train	of	thoughts,	I	believe	that	people	are	becoming	more	aware	of	the
set-based	approach	and	I	see	how	more	and	more	demand	is	required	for	this	approach	in
the	 market.	 I	 think	 people	 are	 becoming	 increasingly	 aware	 of	 the	 need	 for	 a	 certain,
distinct	and	specific	style	of	programming	in	the	database	area.

However,	 I	continue	 to	see	very	often	how	many	programmers	and	many	projects
are	implemented	in	the	same	manner	for	the	user	interface	and	the	database,	without	the
distinction	that	should	be	made.

I	consider	that,	using	a	vague	concept	of	style	and	not	a	strong	scientific	concept,	I
can	 easily	 use	 my	 experience	 in	 the	 database	 and	 illustrate	 the	 style	 that	 I	 developed
during	 many	 years	 of	 programming	 within	 the	 database.	 Without	 being	 a	 theory	 and
without	 the	 strength	and	soundness	derived	 from	scientific	argumentation,	 the	use	of	an
appropriate	style	of	programming	can	add	more	value	than	a	theory.

What	is	the	most	important	matter	for	everyone	involved	in	a	data-oriented	software
application,	apart	from	the	accuracy	of	information?

One	aspect	is	for	sure	the	performance	of	the	software	itself.	One	is	to	run	a	data
migration	 interface	 in	one	minute	and	another	 is	 to	execute	 it	 in	five	minutes!	Getting	a
good	performance	in	the	database	is	proportional,	in	many	situations,	with	the	use	of	the
most	appropriate	style	of	development.

Let’s	continue.	The	question	remains,	what	is	a	style	of	programming?

Can	we	say	that	a	programmer	has	his	own	style?

To	a	certain	degree,	I	would	say	yes.	Most	of	the	programmers	have	their	own	style.
Without	being	very	strict	and	considering	the	classic	developer	that	effectively	writes	code
and	not	the	visual	developer,	I	can	affirm	that	the	style	of	a	developer	is	related	to	the	way
he	writes	his	code.	The	way	the	developer	writes	his	code	is	influenced	by	many	factors:
his	 education	 and	 background,	 his	 experience,	 his	 types	 of	 projects,	 his	 role	within	 the
projects,	 his	 ambitions	 and	 why	 not,	 his	 talent,	 his	 seriousness	 and	 capacity	 of
organization.	We	all	know	how	important	it	is	for	a	programmer	to	be	able	to	organize	his
work	properly;	we	all	agree	that	he	needs	to	be	able	to	see	the	details	without	losing	the
whole.	That	would	be	 the	 ideal	programmer	 in	 an	 ideal	world.	Still,	 very	often	we	 lose
ourselves	 into	 the	 details.	 From	 a	 different	 perspective,	 the	 models	 the	 programmer
learned,	in	the	college	education	-	for	example,	and	used	during	his	experience	influence
his	style.	In	one	way	or	another,	the	style	of	a	programmer	describes	his	ability	to	write.

I	would	 like	 to	believe	 that	 the	programmer	 is	 similar	 to	 a	writer.	The	writer	 has
more	or	less	restrictions	than	the	programmer	depending	on	the	way	you	are	looking	at	it.
The	writer	 is	 restricted	by	his	audience	as	 the	programmer	 is	 restricted	by	his	end	users
and	testers.	The	programmer	is	sometimes	very	technical	but	also	the	writer	may	be.	The

degree	of	creativity	is	an	essential	skill	of	a	programmer	like	is	for	a	writer.	However,	this
degree	 of	 creativity	 is	 not	 absolute	 like	 it	 can	 be	 for	 a	 writer	 but	 relative	 because
programming	is	a	practical	activity	after	all	and	not	pure	art.	Anyway,	just	as	a	writer	has
his	own	style	of	writing,	so	a	programmer	has	his	own	style	of	writing	development	code.

This	is	 the	main	topic	of	this	book,	 this	 is	what	I	want	to	illustrate	and	describe	a
certain	style	of	development	and	the	need	for	a	specific	style	of	database	programming.

I	 consider	 that	 a	 distinct	 style	 of	 programming	 is	 required	when	writing	 inside	 a
relational	database.	I	was	able	 to	develop	and	especially	understand	this	distinct	style	of
development	in	many	years,	in	time.	Being	aware	of	the	fact	that	I	am	not	the	only	one,	I
consider	 that	 this	 style	 of	 development	 is	 not	 promoted	 enough	 and	 is	 not	 clearly
explained	in	 its	details.	 I	 think	that	a	more	detailed	description	of	 this	style	 is	necessary
and	I	believe	that	many	IT	people	can	take	some	advantages	reading	this	book.	One	goal	is
to	 convince	 some	 application	 developers	 to	 reflect	 at	 this	 proposed	 style	 and	 change
something	 in	 the	 way	 they	write	 when	 they	 are	 switching	 to	 the	 database,	 if	 they	will
accept	my	arguments.	Another	goal	is	related	to	IT	education	systems	and	universities.	I
consider	 that	 this	 style	 may	 be	 better	 promoted	 in	 the	 database	 courses	 in	 some
universities.	Apart	 from	understanding	 the	 principles	 of	 relational	 databases,	 apart	 from
understanding	the	SQL	language,	apart	from	the	delivery	of	specific	vendor	languages	like
PL	SQL	or	Transact	SQL,	 it	 is	 also	very	 important	 for	 the	young	 student	 to	understand
how	one	should	adapt	his	code	to	be	more	efficient	in	the	database.	I	do	believe	this	path,
the	use	of	a	specific	style	of	development,	should	be	followed	by	the	developers	that	will
write	 codes	 in	 the	 database.	 I	 also	 consider	 that	 this	 path	 should	 be	 described	 and
explained	 in	 the	 universities	 so	 the	 students,	 the	 next	 future	 of	 programmers,	 will	 be
warned	that	something	needs	to	be	changed	in	the	way	they	write	when	dealing	with	data.

THE	MOST	COMMON	STYLES	OF	PROGRAMMING
Now	 that	 I	 have	 clarified	 and	 described	 the	 concept	 of	 style	 of	 development,	 after
admitting	that	this	is	a	vague	concept	and	not	a	scientific	notion,	I	will	try	to	identify	some
of	the	major	premises	for	one	style	of	development	or	another.	Many	factors	influence	a
certain	 style	 of	 development.	 There	 are	 schools	 of	 development	 and	 these	 schools	 are
based	on	certain	models	 and	 theories.	 I	want	 to	 investigate	 and	 to	describe	 some	of	 the
factors	 that	 contribute	 to	 a	 certain	 style	 of	 programming.	 I	 will	 start	 with	 a	 series	 of
questions.	 These	 questions	 are	 addressed	 to	 a	 programmer,	 eventually	 to	 an	 application
developer	but	not	only.

What	 type	 of	 programmer	 are	 you?	 What	 is	 your	 area	 of	 expertise?	 What
programming	languages	have	you	used?	What	paradigm	did	you	follow	along	your	career
as	a	software	developer?	During	your	career	in	the	software	industry,	what	were	your	main
paths?	Were	you	involved	in	many	levels	of	development,	for	example	did	you	write	code
at	user	interface	level	and	database	level	too?

As	 I	 already	 mentioned,	 I	 am	 specialized	 in	 database	 programming	 and	 I	 am	 a
database	developer.	I	had	been	involved	at	the	user	interface	level	during	my	first	years	of
experience	but	I	liked	databases	too	much	and	I	preferred	to	specialize	quickly	in	the	field
of	database	programming.

Are	you	that	kind	of	programmer?	Not	necessary	specialized	in	databases,	you	may
be	a	highly	specialized	Java	developer,	for	example.

Alternatively,	 you	 are	 a	 programmer	 that	 can	 do	 both	 and	 some	other	 things	 too,
very	flexible,	being	able	 to	switch	from	PHP	or	C#	to	Oracle	database	and	PL	SQL,	for
example.	Are	you	 that	mixed	programmer	 that	performs	very	well	 in	all	 the	sections,	 in
both	 user	 interface	 and	 database	 level?	 I	 have	 all	 the	 respect	 for	 these	 flexible
programmers,	as	long	as	they	make	the	distinctions	and	they	are	not	trying	to	work	in	the
same	way	in	all	the	areas	of	the	software.

Theoretically,	 when	 designing	 and	 developing	 an	 application,	 based	 on	 a	 certain
language	like	C#	or	Java	and	using	a	certain	relational	database	system	like	SQL	Server	or
Oracle,	the	application	can	be	written	by	any	kind	of	IT	specialists.	In	most	of	the	cases,
the	programmers	are	able	to	satisfy	both	sections.	They	are	able	to	write	code	at	the	user
interface	level,	using	Java	or	C#,	and	they	can	write	their	logic	at	the	database	level	using
SQL	and	PL	SQL	or	any	other	specialized	vendor	database	language.

The	other	approach,	not	so	common,	 is	also	possible.	Specialized	database	people
are	used	for	the	database	section	and	application	developers	are	used	for	the	user	interface.
Despite	 the	 advantages,	 this	 is	 not	 the	general	 situation,	 on	 the	 contrary.	 In	most	of	 the
projects,	the	software	applications	are	built	by	application	developers	that	are	able	to	write
in	 the	 database	 using	 SQL	 and	 the	 associated	 procedural	 languages	 like	 PL	 SQL.	 The
developers	are	working	on	both	levels;	user	interface	and	database,	and	they	switch	from
the	user	 interface	 to	 the	database	 level,	periodically.	This	 is	 the	most	common	situation,
with	advantages	and	disadvantages.	It	is	a	matter	of	resources	and	availabilities	but	is	also
a	matter	of	skills	and	costs.

Let’s	say	a	company	wants	to	start	a	new	project,	it	decides	to	use	Java	technology

and	 the	Oracle	database.	The	managers	do	not	generally	 search	 for	 specialized	database
developers	 or	 for	 specialized	 application	 developers.	 They	 imagine	 that	 a	 good
programmer	needs	to	know	both	and	manage	well	both	sections.	They	do	not	search	for
highly	 specialized	 Java	 developers	 to	 allow	 them	 to	write	 Java	 code	 and	 not	 touch	 the
database	under	any	circumstances!	They	do	not	search	for	specialized	database	developers
to	do	exclusive	database	development!	Generally	 the	managers	want	 to	hire	people	 that
can	do	both.	In	the	most	common	scenario,	the	expectations	are	that	the	developers	will	be
able	to	write	C#	or	Java	code,	on	one	hand,	and	write	SQL	code,	on	the	other.	Of	course,
there	are	variations	and	everything	is	related	to	the	specific	of	the	project	and	application.

The	 opposite	 strategy	 is	 not	 so	 common,	 although	 I	 noticed	 that	more	 and	more
projects	 try	 to	 be	 organized	 in	 the	 opposite	 manner.	 I	 also	 noticed	 an	 increase	 in	 the
request	 for	 database	 developers,	 for	 example.	 There	 is	 a	 growing	 demand	 in	 database
development	that	may	be	explained	by	the	larger	number	of	projects	where	more	specific
database	 expertise	 is	 required,	 like	 ETL	 projects,	 data	 warehouse	 projects.	 However,	 I
believe	that,	even	in	normal	projects,	not	so	database	specific,	there	are	managers	to	think
in	this	manner.	Anyway,	this	is	another	discussion	and	it’s	difficult	to	decide.	My	personal
opinion	is	that	finally	this	mixed	approach	will	continue	to	be	the	most	common	one.	The
programmers	prefer	the	user	interface	or	database	but	they	are	generally	able	to	do	both.
The	question	is	how	are	they	doing	it?	Are	they	doing	the	job	right	in	both	sections?	Are
they	 using	 the	 same	principles	 of	 programming	 in	 both	 sections?	Alternatively,	 do	 they
consider	that	a	different	approach	may	be	required?

Any	project	and	any	software	application	 is	 the	mirror	of	a	certain	business	 to	be
implemented.	 Therefore,	 the	 business	 drives	 everything	 including	 the	 database.	 The
programmers	 can	 be	 involved	 mainly	 in	 the	 current	 functionalities	 of	 the	 business,
operational	 systems.	 For	 example,	 they	 can	 be	 involved	 in	 classic	 online	 transaction
processing	 (OLTP)	 configurations,	 in	 classic	 production	 systems.	Others	 developers	 can
participate	to	specific	projects	like	data	warehouse,	replication	systems	or	data	migration
ones.	There	is	a	large	variety	of	situations	and	software	applications	and	the	programmers
should	adapt	their	capabilities	and	should	try	to	be	flexible,	they	should	write	their	code	in
concordance	with	the	specificity	of	the	project.

Apart	 from	 the	classic	programming,	 there	 is	 the	new	 type	of	programming,	very
modern	 and	 fancy,	 the	 visual	 development.	 There	 are	 new	 species	 of	 programmers
specialized	in	tools,	most	of	them	visual,	that	spent	years	and	years	working	with	certain
tools.

This	 is	a	new	type	of	programming,	based	on	efficient	 tools	with	a	 lot	of	code	 in
their	back.	Once	I	had	a	very	curious	and	funny	experience!	I	have	been	to	my	daughter
high	school	when	she	was	in	her	last	year	and	spoke	to	the	college	students.	Some	of	them
were	tempted	to	enroll	to	IT	universities.	I	explained	them	some	basic	facts	regarding	our
world	of	software	developers	and	I	tried	to	explained	them	a	bit	what	are	the	advantages
and	disadvantages	of	a	programmer,	in	my	vision.	One	of	the	college	students	came	to	me
and	told	me	he	is	interested	in	software	development.	Moreover,	he	mentioned	to	me	that
he	would	like	to	be	a	programmer	without	writing	a	line	of	code,	if	possible!	His	dream
was	to	become	a	visual	developer!	I	don’t	want	to	comment	in	any	way	this	vision	but	I
believe	it	is	a	danger	somehow	if	this	vision	will	persist	in	the	future.	I	can’t	imagine	the

new	 type	 of	 programmers,	 with	 no	writing	 experience	 and	working	 exclusively	 visual!
Maybe	I	am	too	conservative!

So,	 coming	 back	 to	 the	 list	 of	 interrogations,	 are	 you	 a	 classic	 programmer	 that
prefers	to	writes	code	or	are	you	a	visual	programmer?

All	these	questions	are	reasonable	in	today’s	market	where	the	complexity	is	so	high
and	the	number	of	alternatives	is	increasing	year	by	year.	There	are	so	many	technologies,
so	many	languages	and	so	many	visual	tools!

Why	we	have	all	these	questions	and	sociological	research?

All	 these	 interrogations	 are	 necessary	 when	 talking	 about	 software	 programming
styles.	The	purpose	of	this	book	is	to	try	to	define	and	to	clarify	a	style	of	programming,
specific	 to	 the	 database	 and	 to	 compare	 it	 with	 a	 classic	 or	 typical	 style.	 The	 topic	 is
generally	addressed	to	developers,	mainly	to	them,	but	not	exclusively.	A	project	manager,
a	 technical	 leader,	 a	 tester,	 a	 business	 analyst	 with	 technical	 skills,	 a	 student	 in	 an	 IT
university	should	be	interested	in	the	topic	too.	This	book	intends	to	help	them	understand
that	changing	their	style	and	adapting	it	to	the	necessities	of	the	project	is	in	their	interest.
For	sure,	everyone	should	win.	All	these	questions	are	designed	to	fit	the	concept	of	style
of	development	in	the	general	context.

The	next	step	in	the	discussion	is	the	programming	model,	the	general	paradigm	in
which	 the	 programmers	 are	 bounded	 or	 linked.	 I	 just	 want	 to	 describe	 a	 general	 and
relative	view,	without	considering	myself	an	expert	 into	 this.	There	are	several	common
models	and,	according	to	these	models,	certain	programming	styles	are	predominant	in	the
market.

The	most	 popular	model	 nowadays	 is	 the	Object-oriented	 paradigm.	This	model
involves	 a	 certain	 style	 of	 programming,	 adapted	 to	 the	 principles	 of	 Object-oriented
programming.	This	model	may	be	considered	one	of	 the	most	 complexes.	 I	believe	 this
model	 is	close	 to	 the	 reality	more	 than	any	others	are.	The	most	common	programming
languages	and	frameworks	rely	on	this	model,	already	classic,	like	Java	or	C#.	All	these
languages	satisfy	the	principles	of	Object-oriented	programming	(OOP).

Object-oriented	 programming	 is	 properly	 described	 in	 the	 IT	 universities	 all	 over
the	world.	Young	and	future	programmers	become	familiarized	with	 the	model	from	the
very	beginning	and	they	understand	that	most	of	their	activity	will	be	based	on	this	model
and	 paradigm.	 The	 principles	 of	 Object-oriented	 programming,	 like	 encapsulation,
polymorphism,	 data	 abstraction	 and	 inheritance	 are	 explained	 both	 in	 theory	 and	 in
practice	 through	 a	 variety	 of	 simple	 applications.	 Any	 junior	 or	 beginner	 programmer,
when	graduating	 the	university,	 is	 aware	of	 this	model.	Apart	 from	 the	principles,	 apart
from	 the	model	 itself,	 a	certain	 style	of	programming	 is	promoted	automatically	and	by
default,	most	of	the	young	programmers	are	already	converted	more	or	less	to	this	style.
The	associated	style	of	programming	is,	to	a	certain	degree,	a	consequence	of	this	model
and	most	of	 the	application	programmers	start	 the	development	 in	a	 similar	 fashion	and
adopt	a	similar	style.	This	 is	very	normal	and	rational,	and	everyone	can	agree	with	 the
idea	 that	 this	 is	 the	 predominant	 style	 on	 the	 market	 and	 a	 large	 part	 of	 the	 written
software	is	based	in	this	model	and	principles.

When	 analyzing	 the	 database	 level	 and	 the	 Object-oriented	 programming	model,

there	 are	 not	 too	many	 things	 to	 be	 discussed.	 This	model	 is	 proven	 unsuitable	 for	 the
databases,	at	 least	for	the	relational	ones.	The	data	is	too	simple	and	the	Object-oriented
model	is	too	complex.	The	Relational	model	is	the	one	that	drive	our	world	of	databases!
The	 simplicity	 of	 the	 Relational	 model	 is	 obvious	 comparing	 to	 the	 complexity	 of	 the
Object-oriented	 model.	 Consequently,	 the	 large	 number	 of	 attempts	 to	 convert	 the
relational	 databases	 to	 the	Object-oriented	model	was	 unsuccessful.	Trying	 to	 adopt	 the
Object-oriented	model	and	its	associated	style	of	programming	in	the	database	was	one	of
the	reasons	for	many	performance	issues	in	the	databases	in	the	past!

Apart	from	the	Object-oriented	paradigm,	there	is	another	model	that	stays	closer	to
the	 relational	model	 and	 database	 programming.	 I	 am	 referring,	 of	 course,	 to	 the	 older
model	 of	 programming,	 comparing	 to	 Object-oriented	 model,	 the	 structured
programming	 model.	 The	 students	 learn	 both	 paradigms	 and	 try	 to	 understand	 both
models.	 Later	 they	 will	 decide,	 depending	 on	 the	 situation	 and	 the	 specific	 of	 their
projects,	which	model	to	choose	and	what	associated	style	of	development	to	adopt.	When
I	 say,	 “decide”,	 I	 don’t	 mean,	 “to	 say	 they	 explicitly	 adopt	 one	 style	 or	 another”.	 The
process	of	adopting	a	certain	style	of	programming	is	somehow	an	unconscious	process.
People	generally	do	not	realize	this	and	they	adopt	it	unconsciously.

In	 the	 IT	 universities,	 while	 learning	 the	 structured	 programming,	 the	 students
become	 aware	 of	 the	 simple	 concepts	 such	 as	 variable,	 structures	 and	 arrays,	 if-else
structures	or	while	loops.	They	learn	how	to	build	a	function,	a	function	that	returns	a	void
“value”.	The	students	learn	how	to	create	a	procedure	in	certain	languages.	They	become
aware	of	the	more	modern	and	complex	concepts	of	class	and	object,	they	learn	about	data
structures,	fields	and	methods.	This	is	the	base,	and	any	programmer	is	aware	of	all	these,
any	programmer	 learn	 these	models	and	most	of	 them	start	 to	apply	all	 these	notions	 in
their	effective	work.	Software	applications	are	built	following	these	principles	of	Object-
oriented	programming	or	the	principles	of	structured	programming.

I	 believe	 we	 can	 consequently	 accept	 as	 programming	 styles	 those	 styles	 of
programming	that	are	in	conformity	with	the	principles	and	models	described	above:	like
Object-oriented	programming	or	the	simpler	model	of	structured	programming.

All	 the	 students	 understand,	more	 or	 less,	 these	 paradigms	 and	 later	 on	 they	will
apply	 these	 principles	 and	 they	 will	 be	 tempted	 to	 adopt	 one	 style	 or	 another	 in	 their
software	development	activity.

To	 continue	 the	 discussion,	 in	 a	 different	 train	 of	 thoughts,	 one	 common
characteristic	of	a	good	programmer	is	the	generality.	A	good	programmer	is	the	one	who
always	tries	to	be	as	general	as	possible.	Being	so,	the	developer	will	be	able	to	cover	the
particular,	and	handle	all	the	particular	situations	that	falls	into	the	general.

Considering	 that,	 Object-oriented	 model	 is	 the	 most	 general	 and	 complete
programming	paradigm	someone	may	agree	 to	 the	 idea	that	 this	model	can	be	used	as	a
baseline	 for	 any	 programming	 activity.	 Moreover,	 the	 style	 of	 development	 that	 every
programmer	has	is	in	concordance	with	the	preferred	model	in	most	of	the	cases.

This	 is	 generally	 true	 but,	 like	 any	 rule	 and	 principle,	 there	 are	 exceptions.	 The
database,	 the	 relational	 model	 is	 too	 simple	 and	 it’s	 simply	 not	 compatible	 with	 the
Object-oriented	programming.

The	 structured	 programming	 and	 the	 Object-oriented	 programming	 are	 the	 most
common	 paradigms	 and	most	 of	 the	 programmers	 are	 adopting	 one	 associated	 style	 of
development	or	another,	depending	on	their	projects.	Whether	they	are	developing	in	Java,
C,	C#,	Delphi	or	anything	else,	the	programmers	are	adopting	one	of	these	two	styles	of
development.	 All	 these	 are	 well	 known	 and	 there	 are	 thousands	 of	 books	 and
demonstrations	about	how	to	write	code	in	one	way	or	another.

Still,	 there	 are	 situations	when	 these	 styles	 are	 not	 convenient.	 There	 are	 certain
types	of	projects	in	which	none	of	these	two	styles	are	required.	Alternatively,	better	said,
there	are	situations	where	 these	styles	should	be	adjusted	 to	accommodate	new	features.
Still,	these	styles	are	used	as	such	because	the	programmers	are	not	always	aware	of	some
distinctions	and	are	not	aware	that	sometimes	they	need	to	try	to	adapt	to	others	scenarios.

It	is	not	hard	to	guess	what	kind	of	scenario	I	have	in	mind.

What	happen	if	we	are	in	the	position	of	developing	in	a	database?

Moreover,	 what	 should	 we	 do	 if	 we	 are	 instructed	 to	 write	 code	 in	 a	 relational
database?

Are	 these	 styles	 of	 development	 the	 most	 suitable	 ones	 for	 working	 within	 a
relational	database?

These	 questions	 drive	 the	 entire	 content	 of	 this	 book.	 In	 addition,	 these	 are	 the
questions	for	I	would	like	to	offer	an	answer.

Let’s	 remember	 some	 simple	 facts	 looking	 back	 in	 the	 history	 of	 software
development.

The	 popularity	 of	 the	 Relational	 model	 is	 out	 of	 question.	 A	 large	 part	 of	 the
businesses	 that	 we	 model,	 either	 production	 or	 sales,	 maybe	 supply	 chain	 planning	 or
inventory,	 or	 flights	 reservation,	 all	 of	 these	 and	 more	 others,	 are	 implemented	 in
relational	 databases.	 Apart	 from	 the	 variety	 of	 online	 transaction,	 processing	 (OLTP)
systems	 there	 are	more	 and	more	historical	 databases	 such	 as	 data	warehouses	used	 for
analysis	and	prediction.	All	the	associated	suite	of	software	applications	are	built	mostly
for	this	data	stored	in	our	relational	databases.

The	database	is	a	critical	component	of	the	software	and	huge	efforts	are	oriented	to
these	databases.

The	two	main	goals	to	be	achieved	are	trivial.	The	databases	should	have	a	correct
design	so	the	data	will	be	stored	fairly	and	the	end	users	should	be	able	to	see	the	reality	of
their	 business.	 The	 logic	 in	 the	 databases	 and	 in	 the	 associated	 applications	 should	 be
consistent	and	accurate	so	the	performance	will	be	acceptable.	This	mainly	means	that	the
response	timings	should	be	good.

Considering	the	importance	of	the	database	component,	the	use	of	a	certain	style	of
development	should	not	be	done	automatically.	For	example,	let’s	see	this	scenario.

John	Doe	is	a	C#	developer,	he	spent	many	years	writing	C#	code	and	now	he	needs
to	build	some	logic	in	an	Oracle	database.	He	would	write	his	code	in	a	similar	fashion.	It
is	 true	 that	 the	Object-oriented	model	 is	 not	 suitable	 for	 the	 database,	 so	 he	will	 use	 a
mixture	between	structure	programming	and	Object-oriented	programming,	as	much	as	he

possibly	could!	He	cannot	use	classes	but	he	can	use,	for	example,	records	or	types	if	he	is
using	PL	SQL.	I	am	sure	you	will	imagine	that	the	list	may	continue.

My	opinion	is	that	this	is	one	of	the	biggest	issues	for	many	application	developers
that	need	to	move	to	the	database	and	need	to	write	logic	at	the	database	level.	They	adopt
an	 inappropriate	 style	 of	 development	 in	most	 of	 the	 cases	 because	 they	 are	 used	 to	 a
certain	style,	to	the	typical	style.	They	not	analyze	and	they	are	not	aware	of	the	different
models.	They	don’t	realize	the	necessity	of	changing	something	in	the	way	they	write	their
code	when	they	handle	the	data.

Being	a	programmer	 is	 a	vague	definition	 today.	People	 are	 specialized	 in	one	or
another	 language	or	 tool;	 they	are	specialized	 in	one	kind	of	business	or	another,	 in	one
type	of	 software	or	another.	There	 is	 a	 large	variety	of	projects	and	 it	 is	difficult	 to	ask
someone	to	know	everything.

Considering	all	 these,	 I	will	minimize	 the	area	of	 interest	 from	 the	beginning	and
continue	the	entire	topic	based	on	this	limited	perspective.

I	am	discussing	about	database	development.	I	will	assume	that	we	are	developing
in	a	relational	database.	From	now	on,	the	entire	discussion	is	particular,	but	still	critical
considering	the	importance	of	the	databases.

Let’s	conclude!	Personally,	I	am	a	database	programmer.	I	am	using	a	certain	style
of	development	 that	 I	was	able	 to	build	 in	 time	and	I	am	planning	 to	promote	 this	style
now.	I	am	specialized	in	databases!	I	chose	this	path	because	I	 like	databases,	because	I
like	to	dig	into	the	data.	I	cannot	pretend	to	anyone	to	become	as	a	passionate	SQL	people
as	I	am.	Rather	than	that,	I	would	like	to	explain	to	others	programmers	my	opinion	about
the	way	they	should	write	their	logic.	Especially	to	those	application	developers	who	need
to	write	code	in	the	database,	due	to	the	circumstances	of	their	projects.	The	database	is	a
critical	component	and	 things	are	getting	very	slow	over	 there	sometimes.	 I	believe	 that
one	reason	for	this	low	performance	is	the	fact	that	an	inappropriate	style	of	development
was	used	in	those	databases.	Let’s	see	how	all	this	was	possible!

THE	DATABASE	DEVELOPMENT	STARTS
WITH	THE	TABLE	DESIGN
I	 know	 that	 this	 sub	 chapter	may	 be	 seen	 as	 inappropriate	 or	 too	 basic	 by	 some	of	my
readers.	The	reason	is	very	simple:	the	basics	of	table	design	should	be	clear	to	everyone,
readers	of	this	book.	Theoretically,	everyone	knows	what	a	table	is,	everyone	knows	what
a	column	is,	and	everyone	should	know	what	a	constraint	 is!	Still,	considering	 the	 large
audience	 as	 described	 in	 the	 introduction,	 I	 would	 like	 to	 describe	 some	 of	 the	 basics
considerations	 regarding	 the	 table	 design.	 I	 hope	 some	 of	 my	 readers	 like	 database
developers	 or	 simply	 developers	 with	 enough	 experience	 in	 database	 development	 will
forgive	me	and	quickly	 read	 this	 sub	 chapter	 or	 simply	move	 to	 the	next	 one.	This	 sub
chapter	 seems	 to	 be	 somehow	 apart	 from	 the	 topic,	 although	 I	 will	 try	 to	 argue	 the
opposite.

As	 I	mentioned	earlier,	 I	am	discussing	about	how	people	should	write	 their	code
inside	a	relational	database.	Let’s	imagine	us	as	part	of	a	team	of	programmers	preparing
to	 start	 the	 development.	We	 are	 already	 familiarized	with	 the	 two	models,	 the	Object-
oriented	model	and	the	structured	model	and	we	learned	the	SQL	language.	The	relational
database	can	be	anything.	It	can	be	Oracle,	SQL	Server,	DB2	or	PostgreSQL.	Things	are
pretty	much	the	same	when	talking	about	the	style	of	development	in	a	relational	database.

I	 consider	 that	 the	 database	 development	 starts	 with	 the	 design.	 That	 is	 why	 I
included	 this	 sub	 chapter	 here,	 because	 this	 is	 the	 starting	 point	 in	 our	 development
activity!	So	let’s	try	to	review	some	basics!

There	is	a	list	of	object	types	(nothing	to	do	with	Object-oriented	programming)	in
any	database,	and	among	various	classifications	of	these	types,	one	is	the	most	important.
We	 can	 classify	 the	 objects	 in	base	 objects	 and	procedural	 objects.	 The	 developer	 is
obviously	 involved	 mainly	 in	 the	 set	 of	 procedural	 objects.	 However,	 despite	 any
appearances,	 the	 development	 actually	 starts	 from	 the	 base	 objects	 design.	 To	 be	more
specific,	the	development	starts	from	the	table	design.	A	good	developer	should	know	that
and	not	undermine	its	importance.

The	database	is	firstly	the	sum	of	its	tables	and	the	table	is	the	center	of	the	universe
in	 the	 universe	 of	 databases!	 I	 am	 referring	 to	 relational	 databases	 and	 I	 don’t	want	 to
upset	the	promoters	of	others	types	of	databases,	non-relational	ones.	An	efficient	database
development	means,	firstly,	the	proper	design	of	the	tables.	The	tables	design	starts	from
the	 business,	 like	 anything	 else	 in	 software	 development.	The	 table	 is	 the	mirror	 of	 the
business,	in	the	sense	that	the	useful	business	information	is	stored	in	the	tables.	When	I
define	a	student	I	need	to	know	in	what	way	a	student	will	be	stored	in	the	system,	I	need
to	 know	 what	 are	 the	 characteristics	 of	 the	 student,	 not	 any	 characteristic,	 but	 the
characteristics	that	are	relevant	for	the	university.

The	database	developer	needs	to	be	aware	of	the	meanings	of	the	tables.	The	table
design	 can	 be	 implemented	 by	 specialized	 architects,	 by	 business	 analysts	 or	 by
developers,	 but	 the	 developers	 need	 to	 have	 a	 good	 understanding	 of	 it.	 The	 set	 of
procedural	 code	 they	will	 write	 have	 one	 single	 purpose,	 to	 get	 everything	 from	 those
tables.

What	 does	 it	mean	 “the	 table	 design”?	Of	 course,	 this	 is	 an	 elementary	question.

The	table	is	a	combination	of	columns	and	rows,	like	an	excel	file.	Even	a	non-technical
person,	 let’s	 say	 not	 a	 programmer,	 a	 secretary,	 an	 assistant	 manager,	 can	 easily
understand	what	a	table	is	when	comparing	the	table	with	an	excel	sheet.	I	know	this	may
sound	like	a	blasphemy	to	some	orthodox	database	people	but	this	is	a	good	comparison
for	the	sake	of	argument!	At	a	closer	look,	the	table	means	something	else	but	at	the	first
view,	and	from	the	logical	perspective,	there	are	similarities	and	it	is	a	good	starting	point
for	 a	 non-technical	 person	 to	 understand	 the	 table	 by	 comparing	 it	with	 an	 excel	 sheet,
considering	the	popularity	of	excel	sheet.

There	are	two	images	for	a	table,	two	ways	of	looking	at,	the	design	view	and	the
execution	view.	In	the	design	view,	one	can	see	the	definition	of	the	table	and,	he	can	see
the	columns.	 In	 the	execution	view,	one	can	see	 the	data,	he	can	see	 the	 rows	and	he	 is
able	to	analyze	and	understand	the	data.

Let’s	talk	about	the	design	view,	the	table	definition.	That	means	simply	the	set	of
columns	 that	 compose	 the	 table,	 and	 the	 columns	 in	 the	 table	 correspond	 to	 the
characteristics	of	 that	something	 that	needs	 to	be	defined,	 in	 this	case	 the	student	or	 the
instructor,	for	example.

The	 column	 should	 have	 a	 name,	 unique	 for	 a	 specific	 table.	 The	 name	 cannot
exceed	 a	 certain	 length,	 according	 to	 the	 database	 system.	 The	 column	 should	 have	 a
certain	data	type,	from	the	available	list	of	data	types	for	each	database	system.	The	most
important	 data	 types	 are	 string,	 numeric	 and	 data,	 with	 variations	 and	 sub	 types.	 The
column	can	be	a	business	column,	with	a	clear	business	meaning,	 like	 the	first	name	of
the	student.	The	column	can	be	a	technical	or	artificial	column,	used	for	 implementing
the	consistency	of	data,	like	an	 identifier,	 for	example	a	student	id.	This	column	has	no
meaning	by	itself	and	the	end	user	will	not	understand	anything	from	it.	However,	 these
columns	 are	 very	 important	 for	 the	 developer	 and	 he	 is	 manipulating	 these	 artificial
columns	with	priority.

The	 table	 design	 continues	 and	 so	 the	 initial	 development.	 The	 table	 designers
define	 the	 columns,	 they	 specify	 the	 relevant	 names	 and	 they	 associate	 the	 correct	 data
types	 according	 to	 the	 business	 requirements.	 The	 first	 stage	 of	 development,	 the	 table
design,	ends	with	the	layer	of	constraints,	a	critical	aspect	of	the	design	but	also	part	of
the	first	layer	of	database	development.	The	designers,	that	sometimes	are	the	developers,
should	be	able	to	use	this	facility	and	define	all	the	constraints	correctly.

I	 will	 shortly	 remind	 the	 most	 common	 types	 of	 constraints.	 Various	 database
systems	may	have	them	all	or	not.

1.	 The	first	type	of	constraint	is	the	so-called	NOT	NULL.	A	column	can	have
such	importance	that	should	always	be	filled	with	something	when	data	is
added	into	the	table.	For	example,	the	name	of	a	student	should	not	miss,	what
is	the	relevance	of	a	student	if	we	do	not	know	the	name!	That	column	will	be
defined	as	mandatory.	This	means	that,	whenever	try	to	add	a	new	student,	for
example,	the	name	should	be	specified,	otherwise	an	error	will	be	raised	by	the
system	and	the	student	cannot	be	added.	Adding	the	NOT	NULL	constraint
whenever	is	possible	is	a	very	good	practice.	As	long	as	we	have	less	null
values,	it	is	better	for	our	development,	as	we	know	how	many	problems	are

caused	by	the	null	values	in	our	logic!
2.	 Maybe	the	most	important	type	of	constraint	is	the	primary	key.	One	of	the

principles	of	a	relational	database	is	the	fact	that	we	should	try	to	identify	one
row	in	a	table.	The	identification	should	be	unique.	Normally,	a	good	design
means	not	accept	the	existence	of	tables	without	a	primary	key.	Any	table
should	have	a	primary	key,	at	least	in	a	normalized	database.	It	is	such	a
feeling	for	a	developer	when	doing	his	logic	later	to	be	sure	he	can	touch	the
row	without	any	doubt!	The	developer	should	always	be	aware	of	the	primary
keys	and	will	manipulate	these	later	very	often	during	his	development	activity.
There	is	one	primary	key	per	table.	The	primary	key	can	be	an	artificial
column	or	not,	but	I	recommend	the	use	of	artificial	columns	whenever	it’s
possible.	That	kind	of	column	has	no	meaning	apart	from	its	role,	in	this	case
the	role	being	to	identify	one	row	in	a	table.	Still,	the	primary	key	constraint
can	be	defined	on	a	business	column,	like	Social	Security	Number,	but	it	is	not
a	common	practice.	The	primary	key	can	also	be	defined	for	a	combination	of
columns.	If	we	want	to	define	the	constraint	for	a	pair	of	columns,	the
combination	of	columns	should	be	unique.

3.	 A	similar	type	of	constraint	is	the	so-called	unique	constraint.	This	constraint
is	similar	with	primary	key,	in	the	sense	of	the	uniqueness	of	the	column,	or
pair	of	columns.	Still,	there	is	a	difference	in	the	meaning.	The	purpose	of	the
primary	key	is	to	identify	a	row	in	a	table.	The	purpose	is	highly	artificial.	By
contrast,	the	unique	constraint	is	generally	a	business	constraint,	specifying
that	a	certain	column	should	be	unique	due	to	the	business	requirements.	For
example,	the	social	security	number	is	not	the	perfect	column	for	a	primary
key,	although	we	can	use	it	if	we	really	want	to.	However,	it	is	a	perfect
column	for	a	unique	constraint.	Comparing	it	with	a	primary	key,	one	per	table,
many	unique	constraints	per	table	are	generally	accepted.	The	unique
constraint	can	also	be	defined	for	a	combination	of	columns,	which	means	that
combination	of	columns	should	be	unique.	The	perfect	combination,	in	my
opinion,	is	to	have	an	artificial	primary	key	and	a	business	unique	key,	if	it
exists.	It	is	good	to	have	them	both,	whenever	it’s	possible!

4.	 A	more	complex	type	of	constraint	is	the	check	constraint.	This	is	a	simple
formula	that	should	be	applied	to	one	column	in	the	table	and	implement
simple	rules.	The	most	common	one	is	the	affiliation	to	a	list	of	values,	like
gender,	that	can	be	either	male	or	female.	Generally,	but	not	always,	a	check
constraint	can	be	combined	with	a	NOT	NULL	constraint.	Combining	check
and	NOT	NULL	is	very	important	because	this	way	we	will	cover	all	the
situations	for	that	column	and	leave	nothing	out.	We	shouldn’t	forget	that	we
are	preparing	for	the	development	and	we	are	in	the	beginning,	the	table
design.	However,	we	have	the	logic	in	our	minds,	the	set	of	procedures	and
functions	that	will	follow.

5.	 Now	we	will	understand	why	the	database	is	called	relational!	For	that,	we	will
analyze	the	foreign	key	constraint.	This	type	of	constraint	implements	the
relations	from	the	database.	Normally,	every	table	has	a	primary	key,	so	it	is
uniquely	identified	by	that	primary	key.	Every	table	should	store	the	distinct
type	of	information	in	a	transactional	and	normalized	system.	The	tables	are

related	between	them	by	foreign	keys	and	are	the	base	for	most	of	the	joins	in
the	logic.	Understanding	and	properly	defining	foreign	keys	it’s	also	a	critical
step	and	the	set	of	foreign	keys	is	the	key	to	the	understanding	of	the	joins,	that
are	to	be	found	everywhere	in	the	logic	that	will	follow.

6.	 The	last	type	of	constraint	is	the	default	constraint.	This	is	not	seen	as	a
constraint	by	all	the	systems.	It	is	not	actually	a	constraint	because	does	not
restrict	the	column	in	any	way.	This	is	just	a	default	value	that	is	added	in	the
absence	of	an	explicit	value.	For	example,	most	of	the	students	in	a	university
in	Paris	are	right	from	Paris,	let’s	say	80%.	In	this	case,	whenever	adding	a
new	student,	based	on	the	probability	for	that	student	to	be	from	Paris,	the
locality	can	be	skipped	at	insert	time	and	the	default	value,	Paris,	will	be	added
automatically.

This	 set	 of	 constraints	 is	 the	 first	 layer	 of	 consistency	 of	 the	 data	 within	 the
database.	 A	 programmer	 that	 is	 working	within	 the	 database	 needs	 to	 be	 aware	 of	 this
layer.	This	is	not	part	of	the	logic	itself,	our	topic	of	discussion,	but	it	can	be	considered	as
such,	even	if	not	effectively.

For	example,	the	gender	is	checked	by	the	values	male	and	female,	this	can	be	done
in	a	stored	procedure	without	any	problems	but	why	would	you	do	 it?	The	programmer
will	have	an	error	handling	procedure,	catch	the	error	identifier	and	the	error	message,	and
detect	the	name	of	the	constraint,	which	is	violated,	and	identify	the	table	and	column	and
raise	an	intelligible	message.	However,	the	rule	itself	is	checked	by	the	database	layer,	the
first	layer	of	constraints.

The	 programmer	writes	 the	 logic	 but	 he	 needs	 to	 be	 aware	 that	 his	 logic	 already
started	with	this	layer	of	table	design	and	constraints.	His	logic	is	generally	for	the	data,
the	data	is	defined	in	tables	and	the	developer	will	continuously	manipulate	these	tables.
The	potential	data	should	be	carefully	analyzed;	the	business	should	be	explained	by	the
persons	 with	 knowledge,	 like	 the	 administrator	 of	 the	 University.	 Based	 on	 this
information,	 when	 designing	 the	 tables,	 the	 programmer	 will	 start	 the	 development
process	by	implementing	a	correct	table	design	including	the	layer	of	constraints.

One	important	matter	about	the	constraints	is	their	names.	It	is	a	very	good	practice
to	give	explicit	names	and	relevant	 in	 terms	of	business.	Don’t	forget	 that	 the	constraint
names	are	visible	in	error	messages	and,	when	see	the	message,	if	the	name	is	explicit	and
relevant,	you	will	understand	right	away	what	it	is	about	and	quickly	identify	the	starting
point	for	 the	 investigations.	Apart	from	that,	 the	developer	can	easily	find	the	objects	 in
the	metadata	associated	with	every	database:	this	is	also	an	important	matter.

Now	let’s	come	back	to	the	application	developer,	which	is	thrown	in	the	middle	of
a	 database!	More	 than	 that,	 this	 application	developer	may	not	 be	 familiarized	with	 the
database	almost	at	all,	he	does	not	know	too	much	about	tables	and	columns!	Even	if	this
is	not	very	common,	we	know	 it	could	happen.	He	knows	what	a	variable	 is,	he	knows
what	a	data	type	is	and	in	which	way	he	needs	to	associate	a	data	type	with	the	variable,
he	 knows	 that	 he	 needs	 to	 specify	 a	 name	 to	 the	 variable	 and	 he	 knows	 that	 the	 name
cannot	exceed	a	certain	length.	He	is	also	familiarized	with	the	excel	file!	He	can	easily
translate	everything	and	has	a	basic	understanding;	he	can	have	a	starting	point.

So,	what	he	needs	to	know	first	when	dealing	with	the	database	development	is	not
the	 logic	 itself,	 he	 already	 knows	 the	 principles	 of	 structured	 programming	 so	he	has	 a
good	background	that	he	will	apply,	to	a	certain	degree.	He	firstly	needs	to	be	familiarized
with	the	basic	objects,	with	the	tables.	The	table	is	the	object	type	that	will	be	accessed	in
his	logic	almost	everywhere.

More	or	less	these	are	the	basics	things	that	can	be	said	about	tables	and	columns.
As	you	can	see,	it	is	not	too	much.	Things	are	very	simple	and	a	good	table	design	follows
all	the	above.	See	below	an	example.	We	will	create	a	table	and	we	will	add	a	variety	of
constraints	to	enforce	certain	rules	for	the	columns,	rules	that	have	been	shortly	described
earlier.

Code	example	01:	Design	example

CREATE	TABLE	Students

(

Student_Id	INT	NOT	NULL,

Student_Name	VARCHAR	(30)	NOT	NULL,

SSN	VARCHAR	(30)	NOT	NULL,

Locality_Id	INT,

Birth_Date	DATE,

Gender	VARCHAR	(10)	NOT	NULL

);

ALTER	TABLE	Students	ADD	CONSTRAINT	PK_Students_Student_Id

PRIMARY	KEY	(Student_Id);

ALTER	TABLE	Students	ADD	CONSTRAINT	UQ_Students_SSN

UNIQUE	(Student_Id);

ALTER	TABLE	Students	ADD	CONSTRAINT	CK_Students_Gender

CHECK	(Gender	IN	(‘Male’,	‘Female’));

ALTER	TABLE	Students	ADD	CONSTRAINT	FK_Students_Localities

FOREIGN	KEY	(Locality_Id)REFERENCES	Localities	(Locality_Id);

This	is	an	example	that	illustrates	the	above	considerations.	You	can	see	the	primary
key,	an	artificial	column	Student	id	with	no	business	meaning	and	with	the	simple	goal	to
identify	one	row	in	the	table,	the	uniquely	identify	a	student.	In	this	way,	we	will	always
be	sure	that	we	can	read	and	write	properly	a	certain	student,	without	any	doubts.	You	can
also	 see	 the	 column	Student	Name,	 a	 descriptive	 field	 but	mandatory,	 a	 column	with	 a
clear	 business	meaning.	Let’s	 look	 at	 the	 column	SSN.	The	 social	 security	 number	 is	 a
business	 column	 that	 holds	 the	 attribute	 of	 uniqueness.	 This	 is	 the	 business	 key	 of	 the
table,	and	a	unique	constraint	was	defined	for	the	column.	The	column	gender	is	a	column
with	a	very	low	selectivity	(only	two	possible	values	male	and	female).	A	check	constraint
was	 applied	 to	 the	 column	 according	 to	which	we	 are	 sure	 that	 no	 other	 value	will	 be
specified	 for	 this	 column.	The	 locality	 is	 referenced	 by	 the	 foreign	key	 constraint.	The
tables	are	linked	by	relations	and	these	relations	are	implemented	and	checked	in	most	of
the	 cases	 by	 the	mechanism	of	 foreign	 keys.	We	 assume	we	 already	built	 another	 table
with	 the	 localities;	 another	primary	key	 that	 is	 referenced	 in	 students	 table	will	 identify
one	locality.

The	table	design,	without	being	pure	development	of	any	type,	it	can	be	considered
as	 such	 for	 someone	working	 in	 the	database.	A	developer	not	being	 aware	of	 all	 these
cannot	develop	properly	in	any	database.

DO	WE	ALREADY	START	THE	DEVELOPMENT?
The	example	above	 is	extremely	simple.	These	basic	considerations	are	very	 familiar	 to
most	of	the	programmers	that	work	with	data.	The	goal	of	this	book	is	not	to	describe	SQL
but	 to	promote	 a	development	 style.	Still,	 an	 introduction	 in	 relational	database	 and	 the
SQL	language	is	required.

We	started	with	the	table	definition	and	we	tried	to	illustrate	the	most	common	set
of	 constraints	 attached	 to	 the	 tables.	We	 illustrated	 a	 set	 of	Data	Definition	 Statements
(DDL).

This	is	the	section	of	table	design.

In	the	relational	database,	we	may	have	various	classifications.	As	we	saw	earlier,
we	have	base	objects	and	procedural	objects.	The	table	is	the	base	object	by	definition,	the
most	 important	 one.	 In	 the	 relational	 database,	 everything	 is	 for,	 against,	 and	 with	 the
tables.	That	is	why	a	programmer	should	firstly	understand	this	simple	object.	You	are	in
the	relational	database	and	you	handle	 tables!	You	look	into	 the	relational	database:	you
are	looking	at	the	tables!	It	is	much	simpler	than	what	you	already	know,	all	you	need	is	to
be	open	and	try	a	paradigm	shift.

We	 are	 discussing	 about	 programming	 and	 about	 the	 necessity	 to	 adopt	 a	 certain
style	of	development	that	is	different	from	what	we	generally	know.

The	concept	of	table,	the	idea	of	row	and	column	are	the	ones	that	show	up	in	front
of	us.

The	first	task	for	the	programmer	is	to	understand	the	table.	Rows	and	columns,	is
too	 simple!	 It	 is	 surprising	 that	 sometimes	 even	 simplicity	 is	 a	 problem.	 Instead	 of
experiencing	satisfaction,	some	typical	developers	are	complaining	about	the	simplicity	of
the	model.

Someone	might	say	that	this	has	nothing	to	do	with	development,	eventually	that	is
a	work	for	a	DBA!	I	disagree	completely	and	I	consider	that	a	database	developer	should
understand	 the	 table	design	better	 than	 the	DBA.	The	DBA	generally	does	not	 care	 too
much	about	meanings.	He	is	an	administrator;	he	has	a	very	important	role.	Still,	the	DBA
does	not	know	the	business	so	well	because	he	is	not	an	expert	of	that	type!	The	database
developer	 knows	 it	much	 better!	 In	 some	 books,	 you	 can	 see	 that	 the	DBA	 creates	 the
tables.	Actually,	the	table	creation	is	part	of	the	database	developer	responsibilities	not	the
DBA.	The	DBA	will	just	build	the	appropriate	scripts	for	the	production	environment	but
the	tables	were	created	by	the	developer	in	the	development	environment	long	time	ago!
The	database	administrator	(DBA)	is	aware	of	the	table	design	because	he	is	managing	the
system,	 especially	 the	 production.	 Still,	 the	 true	 creator	 of	 the	 tables	 is	 the	 database
developer	because	he	knows	the	meanings,	he	is	building	the	logic	and	he	knows	what	the
purpose	of	one	column	or	 another	 is	because	he	will	manipulate	 these	 in	his	 logic	 later
during	the	development	process.

The	database	developer	 is	 the	one	 that	handles	 the	 logic	within	 the	database.	 In	a
variety	of	applications,	the	complexity	of	the	logic	within	the	database	is	extremely	high.
This	complexity	can	be	handled	in	many	ways.	Having	application	developers	working	in
an	 inappropriate	 style	 in	 the	database,	using	 their	 specific	programming	philosophy	and

not	adequate	to	the	database,	using	their	own	style	in	the	database	will	harm	the	database
infinitely	 even	more	 than	 some	 lack	 of	 indexes,	 for	 example.	An	 application	 developer
should	 try	 to	 understand	 the	 principles	 of	 database	 development	 when	 he	 will	 need	 to
write	code	in	the	database.

Let’s	see	a	final	review	once	more!

We	 will	 start	 the	 database	 development	 and	 we	 will	 start	 writing	 code	 into	 the
database.	 For	 that,	 let’s	 try	 to	 see	what	 the	 responsibilities	 of	 a	 database	 developer	 are.
Let’s	see	some	examples.

1.	 The	programmer	builds	the	logic	that	allows	data	access.
2.	 The	programmer	builds	the	logic	that	allows	end	users	to	read	the	data	and	to

write	the	data.
3.	 The	programmer	may	build	the	mechanism	that	may	allow	transfer	of	data

between	various	databases.
4.	 The	programmer	may	build,	for	example,	an	ETL,	or	a	replication	system	or	a

data	migration	system	etc.	In	this	case,	he	will	be	responsible	for	the	data
transfer	between	various	systems.

These	 are	 just	 some	 examples	 of	 tasks	 that	 a	 programmer	 may	 have.	 There	 are
various	situations	and	I	will	try	to	analyze	some	of	them	later.	The	programmer	can	be	a
database	developer	or	can	be	an	application	developer	that	is	doing	database	development
along	with	his	application	development.

The	programmer	should	be	aware	of	 the	 tables,	he	can	design	them	or	not,	but	he
definitely	uses	them	all	the	time	so	he	needs	to	know	them	very	well.	Regarding	the	set	of
constraints	like	primary	key,	check,	NOT	NULL,	unique	and	foreign	key,	a	good	and	fair
implementation	 is	 already	 a	 key	 to	 a	 successful	 development.	More	 than	 that,	 a	 correct
design	of	the	constraints	is	part	of	the	primary	development.

Everything	 starts	 with	 the	 table	 design.	 Let’s	 see	 one	 example	 of	 good	 design
wrongly	implemented.	I	can	show	you	how	a	good	table	design	may	lead	to	a	nightmare	in
the	 future	 development	 if	 is	 not	 properly	 understood.	 Let’s	 say	 we	 have	 an	 important
entity	 in	 an	 application,	 for	 example	 an	 invoice.	 We	 have	 an	 invoice	 number	 and	 an
invoice	 identifier,	 an	 artificial	 primary	key.	This	 is	 the	header.	 In	 the	 invoice	detail,	we
have	a	combined	primary	key	between	the	invoice	identifier	from	the	header	and	a	current
number.	See	the	design	below.

Code	example	02:	Design	example

CREATE	TABLE	Invoices

(

Invoice_Id	INT	NOT	NULL,

Supplier_Id	INT	NOT	NULL,

Invoice_Date	DATE	NOT	NULL,

CONSTRAINT	PK_Invoices_Invoice_Id

PRIMARY	KEY	(Invoice_Id)

);

ALTER	TABLE	Invoices	ADD	CONSTRAINT	FK_Invoices_Suppliers

FOREIGN	KEY	(Supplier_Id)	REFERENCES	Suppliers	(Supplier_Id);

CREATE	TABLE	Invoices_Details

(

Invoice_Id	INT	NOT	NULL,

Current_Number	INT	NOT	NULL,

Quantity	INT	NOT	NULL,

Currency	VARCHAR	(30)	NOT	NULL,

CONSTRAINT	PK_Invoices_Details

PRIMARY	KEY	(Invoice_Id,	Current_Number),

CONSTRAINT	FK_Invoices_Invoices_Details

FOREIGN	KEY	(Invoice_Id)

REFERENCES	Invoices	(Invoice_Id)

);

This	is	an	example	of	a	good	design.	Still,	if	implemented	incorrectly,	it	may	have
bad	 consequences.	 Imagine	 that	 the	 column	 Current	 Number	 is	 a	 volatile	 column	 and,
every	time	new	details	are	added	to	the	invoice,	the	values	are	recreated	based	on	certain
criteria’s.	Like	a	true	current	number.	For	example,	let’s	assume	that	the	details	are	shown
and	the	current	number	is	generated	ordered	by	quantity.	In	this	case,	the	first	detail	today
will	 become	 the	 third	 one	 tomorrow.	 Imagine	 that	 the	 details	 should	 be	 updated.	 Very
often,	 an	 update	 is	 done	 based	 on	 the	 primary	 key.	 In	 the	 given	 conditions,	 this	 is
impossible!	Another	 additional	 field,	 to	 satisfy	 the	condition	of	uniqueness,	needs	 to	be
added.	This	is	true	if	the	mechanism	of	current	number	cannot	be	changed.	Alternatively,
the	current	number	will	not	be	recreated	but	kept	with	every	change	in	the	invoice.

It	 is	 critical	 for	 the	primary	key	 to	 be	 set	 correctly	 because	very	often	 this	 is	 the
criteria	for	update.	If	we	want	to	update	anything,	we	need	to	be	able	to	identify	it	first.
The	 primary	 key	 should	 not	 just	 be	 unique	 but	 also	 stable.	 The	 stability	 needs	 to	 be
combined	 with	 uniqueness	 for	 the	 primary	 key	 to	 be	 indeed	 the	 criteria	 for	 row
identification	 and,	 consequently,	 for	 update.	Otherwise,	we	 need	 to	 use	 something	 else,
maybe	a	business	unique	constraint,	 for	update.	 Imagine	we	have	a	 service	a	part	of	 an
invoice,	with	 the	 current	 number	12.	The	 invoice	 id	 is	 100.	Therefore,	 the	pair	 100,	 12
identifies	 this	 invoice	 detail.	 I	want	 to	 update	 something	 in	 this	 detail,	 first	 I	 query	 the
detail	 based	on	 the	pair	100	and	12	and	 then	 I	update.	 If	 the	 current	number	 is	volatile
tomorrow	will	become	20.	The	pair	will	become	100,	20	instead	of	100	and	12.	Trying	to
update	the	pair	100	and	12	will	update	another	detail.	Therefore,	this	is	a	good	design	but
not	 correctly	 implemented	 by	 the	 application	 developer.	 The	 primary	 key	 should	 be
unique,	mandatory.	More	than	that,	if	the	primary	key	is	the	criteria	for	update	it	needs	to
be	stable.	Stability	is	another	component	of	a	primary	key	and	this	is	something	that	the
developer	needs	 to	be	 aware.	Most	of	 the	developers’	work	 is	 on	 these	 tables,	 trying	 to
populate	 them	 with	 data.	 This	 is	 the	 reason	 why	 understanding	 the	 tables	 and	 the
associated	constraints	is	critical	for	them.

Please	try	to	can	see	how	the	software	programmer	is	already	involved	in	the	logic
even	before	starting	it.	Later	the	developer	will	received	some	tasks	to	update	the	details
of	the	invoice.	He	will	need	to	make	a	huge	effort	because	someone	did	not	understand	the
table	 design.	 The	 combination	 between	 the	 invoice	 number	 and	 the	 current	 number	 is
unique.	 This	 pair	 will	 identify	 one	 row	 in	 a	 table.	 Still,	 the	 primary	 key	 is	 not	 stable
because	 the	 current	 number	 is	 volatile.	 The	 primary	 key	 is	 not	 persistent,	 the	 current
number	 is	changing	all	 the	 time	after	 the	 table	 is	updated	and	the	developer	 is	forced	to
find	other	ways	to	identify	the	rows,	he	will	need	to	define	and	populate	another	artificial

column	to	solve	the	problem.	He	should	add	a	unique	business	constraint,	but	that	one	will
still	 be	 artificial.	Being	 involved	 in	 the	 table	 design	 from	 the	 beginning,	 possessing	 the
proper	knowledge,	he	would	have	been	able	to	avoid	all	these	issues.

That	 is	 why,	 when	 seeing	 in	 different	 books	 that	 the	DBA	 is	 responsible	 for	 the
design	of	the	base	objects	like	tables	I	am	becoming	very	confused.	He	is	responsible	for
the	implementation	in	production	eventually	adding	partitions,	indexes,	using	parallelism,
but	the	design	itself	is	the	responsibility	of	the	programmer,	of	the	database	developer.

The	programmer	is	familiarized	with	classic	programming	and	he	knows	very	well
one	model	or	another,	Object-oriented	model	or	structured	model,	he	might	have	Java	or
C#	 experience.	 Then,	 he	 needs	 to	 deal	 with	 relational	 database	 development.	 The	 first
contact	 is	with	the	table.	He	sees	only	rows	and	columns.	Some	programmers	don’t	 like
this	model	of	data	due	 to	various	 reasons.	Nevertheless,	whether	 they	 like	 it	 or	not,	 the
simplicity	of	the	relational	model	is	so	obvious	that	no	one	can	deny	it.	Moreover,	this	is
not	 a	 bad	 thing	 in	 itself.	 Of	 course,	 nowadays,	 after	 so	 many	 years,	 everyone	 is
familiarized	with	SQL	and	relational	databases.	Still,	many	programmers	are	not	able	 to
solve	things	properly	in	the	database	and	try	to	apply	a	style	of	development	that	may	be
suitable	at	others	levels	but	for	sure	is	not	suitable	at	the	database	level.

ARE	WE	READY	FOR	SQL?
I	just	clarified	the	concept	of	table	as	the	most	important	one	for	a	database	programmer
or	 application	 programmer	 dealing	 with	 data.	 The	 tables	 are	 related	 to	 each	 other	 by
logical	relations	enforced	by	the	first	layer	of	constraints.

We	have	a	database;	we	have	a	variety	of	tables.	We	want	to	access	these	tables,	to
populate	and	read	the	contents	of	the	tables.	What	are	we	using?	We	may	be	true	database
developers,	or	we	may	be	Java	or	C	developers.	Perhaps	we	are	used	to	deal	with	systems
in	 the	 classic	way	and	we	need	 to	handle	data	 in	 a	 relational	database.	We	can	use	 any
database	 system	 like	Oracle,	 or	 SQL	Server,	 or	maybe	MySQL	or	PostgreSQL.	We	 are
now	transferred	in	the	middle	of	a	specialized	data	warehouse	that	is	using	Teradata	and
we	 need	 to	 work	 in	 an	 ETL	 interface	 system.	 Well,	 we	 have	 good	 news.	 We	 have	 a
standard,	as	you	know.	SQL	is	a	standard	and	the	advantages	can	be	seen	by	anybody	who
has	the	chance	to	deal	with	many	database	systems.

SQL	 is	 the	standard	and	most	of	 the	 relational	database	systems	are	using	 it.	 It	 is
true	 that	 this	standard	was	 implemented	differently	from	one	system	to	another	and	 it	 is
true	that	 there	are	differences	between	syntaxes.	Still,	 the	differences	are	minor.	Dealing
with	one	database	system	and	switching	into	another	database	system	should	be	relatively
easy.	Moreover,	it	is	indeed!	As	you	know,	any	database	system	has	its	own	programming
language	that	is	an	extension	of	SQL.	Oracle	has	the	PLSQL	language;	SQL	Server	uses
Transact	SQL	language	and	others.	However,	the	SQL	is	almost	the	same,	all	the	software
suppliers	realize	the	advantages	of	having	a	standard	and	they	tried	to	adapt	the	syntaxes
to	be	compliant	with	it.

This	is	one	reason	to	say	that	being	a	database	developer	means,	first,	being	a	SQL
developer.	The	existence	of	 the	standard	makes	 things	easy	 for	database	developers	 that
can	easily	switch	from	one	database	system	to	another.	We	will	see	more	on	that	soon.

Now	 it	 is	 time	 to	 see	 what	 SQL	 actually	 is.	 The	 review	will	 be	 basic	 because	 I
consider	this	quite	common	and	the	topic	of	the	book	is	not	to	describe	the	SQL	language.
SQL	is	one	of	the	most	popular	languages	nowadays	after	so	many	years	of	usage.	Still,
the	number	of	true	and	good	SQL	developers	is	not	very	high.

This	is	one	reason	to	say	that	being	a	database	developer	means,	first,	being	a	SQL
developer.

There	 are	 PL	 SQL	 developers,	 for	 example.	 There	 are	 people	 who	 say	 that	 they
work	 exclusively	 in	 Oracle	 database	 as	 developers.	 Alternatively,	 there	 are	 exclusive
Transact	SQL	developers.	This	is	somehow	absurd,	in	my	opinion!	I	believe	that	there	are
mainly	SQL	developers.	A	true	database	developer	is	mostly	a	SQL	developer.	Most	of	his
work	 is	 pure	 SQL.	 Afterwards,	 to	 learn	 new	 syntaxes	 to	 create	 a	 stored	 procedure	 in
Oracle	or	SQL	Server	is	not	a	big	deal!	The	transition	from	one	system	to	another	is	very
simple.	The	principles	of	 structured	programming	apply	 to	all	 these	dedicated	database-
programming	 languages.	 The	 existence	 of	 the	 standard	makes	 things	 easy	 for	 database
developers	that	can	easily	switch	from	one	database	system	to	another.	Now	it	is	time	to
see	what	SQL	actually	is.

I

Chapter	2

SQL	-	THE	BEAUTY	AND	THE	BEAST!
HOW	CAN	A	QUERY	LANGUAGE	BE	SO	IMPORTANT	FOR	A	STYLE
OF	DEVELOPMENT?

n	the	first	chapter,	I	analyze	the	table	design,	including	the	layer	of	constraints,	and	I
conclude	that	this	is	actually	the	beginning	of	the	development	process.

Let’s	continue	with	the	next	step!

When	we	speak	about	development,	we	should	speak	about	a	language.	Any	classic
development	activity	requires	a	language.	Do	we	have	a	language?	The	answer	is	obvious,
yes,	 and	 that	 language	 is	 available	 for	 many	 years;	 it	 is	 the	 universal	 language	 for
relational	 databases.	 The	 surprise	 is	 the	 fact	 that	 this	 language	 is	 not	 a	 typical
programming	language.	That	language	is	a	query	language.	It	is	the	popular	Structured
Query	Language,	the	so-called	SQL.

In	the	beginning,	someone	may	be	shocked.	The	topic	is	the	necessity	of	a	certain
style	 of	 programming	 inside	 a	 database.	 So	 we	 are	 thinking,	 obviously,	 at	 a	 classic
programming	language.

It	comes	as	a	big	surprise	the	fact	that	we	are	discussing	something	else!

We	are	firstly	talking	about	a	query	language	and	not	about	a	classic	programming
language!	This	seems	unusual	to	anyone	not	familiarized	with	the	databases.

In	a	data,	oriented	software	application	there	is	a	large	variety	of	people	involved	in
the	generic	activity	of	query.	A	customer	support	people,	a	business	analyst,	a	consultant,
a	tester,	and	a	QA	analyst	they	all	query	the	data	regularly	to	get	whatever	they	need.	They
are	not	doing	any	programming,	 they	are	simply	querying.	Almost	everyone	is	querying
the	data	in	a	certain	way,	and	almost	all	of	them	use	SQL	for	that	purpose.	SQL	is	not	a
dedicated	language	for	programmers.	SQL	is	a	language	for	every	category	of	people	that,
for	 some	 reason	 or	 another,	 need	 access	 to	 data.	 There	 are	 so	 many	 non-programmers
working	 in	 software	 companies	with	 a	 good	 level	 of	 SQL!	 This	 shows	 once	more	 that
SQL	is	something	else	than	a	classic	programming	language,	it	is	very	close	to	a	natural
language.

A	 database	 will	 requires	 a	 query	 language	 useful	 for	 data	 access	 inside	 it.	 This
seems	 to	 be	 a	 valid	 statement	 for	 any	 kind	 of	 database.	 As	 I	 already	 said,	 this	 query
language	is	not	necessarily	a	programming	language,	in	the	classic	sense	of	its	definition.
This	query	language	can	be	embedded	in	a	programming	language	and	used	by	database
programmers,	or	it	can	be	used	as	such	by	all	the	categories	as	the	one	mentioned	above
for	the	simple	purpose	of	data	access,	for	the	simple	purpose	of	interrogation.

I	assume	that	the	query	language	should	exist,	for	any	kind	of	database	system.	A
programming	 language	 that	 is	 specific	 to	 a	 database	 should	 use	 the	 query	 language
because	the	main	purpose	in	a	database	 is	data	access	 in	one	way	or	another.	Therefore,
despite	 some	 opinions,	 the	 query	 language	 is	 critical	 and	 mandatory	 for	 a	 database

programming	language	and	a	good	programmer	working	inside	a	database	should	have	at
least	an	acceptable	knowledge	about	the	query	language.

A	 parallel	with	 old	 times	 comes	 to	my	mind,	when	Latin	was	 the	 only	 academic
language	 and	 all	 the	 others	were	 considered	 barbarian	 languages.	The	 books	 have	 been
written	 in	 Latin	 for	 many	 centuries	 and,	 for	 many	 years,	 Latin	 was	 the	 only	 accepted
language.	 Somehow,	 some	 programmers	 consider	 a	 classic	 programming	 language	 like
Latin	 and	 they	 consider	 SQL,	 for	 example,	 like	 a	 barbarian	 language.	 They	 say,	 for
example,	that	since	SQL	is	not	a	dedicated	language	for	their	preferred	category	and	it	is
used	by	so	many	other	categories	apart	from	theirs,	this	makes	SQL	a	sort	of	primitive	and
barbarian	language.

I	assume	you	agree	this	is	an	arrogant	and	irrational	vision.	I	strongly	disagree	with
it,	as	we	all	should	do.

The	 software	 development	 world	 is	 a	 very	 practical	 world.	 The	 quality	 of	 a
language	consists	firstly	in	its	utility.	More	than	that,	the	utility	should	be	associated	with
simplicity.	SQL	is	a	very	useful	language:	it	was	proven	to	be	as	such	for	all	these	years
and	 the	 fact	 that	 it	 is	 used	 by	 so	 many	 categories	 of	 professionals,	 not	 just	 by
programmers,	 is	 a	 quality	 and	 not	 a	 disadvantage.	 The	 fact	 that	 non-programmers	 can
learn	 it	proves	 that	SQL	 is	a	good	 language	and	 it	may	be	used	as	a	query	 language	by
almost	everyone	in	the	enterprise.

On	 the	 other	 hand,	 programmers,	 either	 specialized	 database	 developers	 or	 any
other	 kind	 of	 developers	 doing	 some	 work	 inside	 a	 database,	 use	 SQL	 as	 part	 of	 a
programming	language	in	their	activity	of	database	development.

Even	 if	 a	 programmer	 should	 have	 a	 more	 complex	 understanding	 of	 SQL,
sometimes	we	can	find	a	 tester	or	an	analyst	having	a	better	perception	of	SQL	than	an
application	developer	does!	Things	are	also	related	to	everyone’s	experience,	of	course!

When	 dealing	with	 data	 in	 a	 relational	 format	 there	 are	 some	 basic	 things	 to	 do!
First,	we	need	to	understand	the	concept	of	a	 table,	 the	concept	of	row	and	column.	We
need	to	understand	the	table	design,	eventually	with	its	layer	of	constraints.	Secondly,	we
need	to	understand	and	use	the	associated	query	language	specific	for	data	access	in	that
format.

This	 is	 the	 first	paradox	 for	an	application	developer	 that	needs	 to	do	some	work
inside	a	database.	He	knows	classic	programming	and	now	he	needs	to	reconsider	himself
and	 make	 contact	 with	 another	 type	 of	 language,	 much	 simpler	 than	 what	 he	 already
knows,	 and,	 more	 important,	 a	 different	 language	 than	 what	 he	 is	 used	 to,	 a	 query
language.	This	is	confusing,	at	least	in	the	beginning.

The	application	developer	needs	to	understand	that	a	query	language	is	required	due
to	the	nature	of	data.	This	is	a	very	basic	and	trivial	statement.	The	data	exists	to	be	read
and	written.	We	need	a	way	to	access	the	data	within	our	databases.	This	is	the	definition
of	 a	 query	 language;	 it	 allows	 data	 access,	 read	 and	 write.	 More	 than	 that,	 it	 allows
metadata	access,	both	read	and	write.

This	 is	 one	 difference	 between	 the	 two	 levels:	 user	 interface	 level	 versus	 the
database	 level.	 The	 goal	 in	 the	 database	 is	 specific	 and	 particular,	 data	 and	 metadata

access.	From	the	beginning,	the	expectations	are	very	clear.	There	are	the	expectations	of	a
reader,	the	expectations	of	a	writer,	all	in	a	certain	format.	At	the	user	interface	level,	we
can	theoretically	and	potentially	expect	anything.	At	the	database	layer,	we	have	one	main
expectation	and	we	want	only	one	thing.	I	am	sure	you	know	very	well	what	that	is!

The	 presence	 of	 a	 query	 language	 is	 already	 one	 premise	 for	 the	 necessity	 of	 a
certain	style,	distinct	from	the	one	we	are	using	at	the	user	interface	level,	where	the	style
is	 driven	mainly	by	 some	general	models	 like	 those	mentioned	 in	 the	 first	 chapter.	The
style	 of	 development	 is	 driven	 by	 these,	 among	 others,	 but	 not	 exclusively!	 Sometimes
others	 factors	 may	 determine	 the	 style	 of	 development,	 like	 the	 nature	 of	 data,	 for
example.

In	the	database	the	required	style	should	be	conform	to	the	particular	expectations
and	goals	described	above.	The	style	of	development	should	be	somehow	associated	with
the	goal:	 see	 the	data,	get	 the	data,	write	 the	data,	 change	 the	data,	delete	 the	data,	 and
move	the	data!	Things	are	quite	clear	and	there	are	reasons	for	the	database	people	to	be
happy,	 everything	 being	 so	 obvious.	 Since	 the	 goal	 is	 straight	 and	 simple,	 so	 the	 style
should	be.	There	 are	no	 reasons	 to	 expect	 the	 same	complexity	 that	you	 see	 at	 the	user
interface	level,	with	such	complex	programming	concepts	to	apply.	You	don’t	need	to	be
concerned	too	much	about	all	these	in	the	database!	It	is	like	when	you	buy	some	fruits	at
the	market:	 apples,	 bananas,	 oranges	 and	 grapes	 and	 in	 the	 end	 instead	 of	 applying	 the
simple	rule	of	addition	and	multiplication,	you	start	calculating	some	differential	equations
to	get	the	result!

The	fact	that	the	query	language	is	a	natural	language	and	the	basics	can	be	learned
in	one	or	 two	weeks	 is	great!	From	what	 I	know	and	always	believed,	 in	programming,
simple	 things	 are	 better	 things.	 To	 me,	 the	 simplicity	 and	 naturalness	 of	 the	 query
language	 is	 a	 big	 advantage	 for	 everyone,	 including	 for	 the	 application	 developers	 that
start	to	deal	with	the	database,	and	for	the	students	finishing	the	universities	and	preparing
to	write	software	code.

Nevertheless,	 some	 application	 developers	 consider	 the	 opposite	 and	 they	 rather
prefer	 to	 make	 things	 more	 complicated	 because	 they	 believe	 they	 have	 some	 artistic
visions	 against	 programming!	 I	 agree	 with	 the	 idea	 that	 a	 programmer	 is	 somehow	 an
artist,	but	always	a	practical	one.	The	programmer	has	some	clear	goals	and	 these	goals
are	driven	by	the	business.	The	programmer	is	not	the	absolute	leader	of	his	work	as	the
artist	is.

So	 the	 first	 thing	 an	 application	 developer	 should	 do,	 if	 he	 is	 really	 involved	 in
database	 programming,	 is	 to	 try	 to	 forget	 for	 a	 while	 about	 his	 classic	 programming
background	and	dedicate	some	time	to	understanding	a	simple	but	vital	 language	for	his
work.	 He	 needs	 to	 spend	 time	 in	 understanding	 the	 popular	 query	 language,	 the
Structured	Query	Language.	He	 also	needs	 to	 comprehend	 the	 importance	of	 a	 query
language	in	his	programming	activity	and	he	needs	to	understand	that	a	query	language	is
something	vital	 for	his	 software	development	activity.	He	should	not	complain	anymore
about	the	lack	of	esthetics,	for	example,	when	speaking	about	SQL.	You	cannot	compare
apples	with	pears!

Even	in	the	absence	of	SQL	and	not	referring	explicitly	to	the	relational	database,

but	 speaking	about	any	database,	 things	would	be	similar.	The	data	 is	 for	being	queried
and	this	activity	is	critical	when	implementing	the	logic	inside	the	database.	Therefore,	the
query	language,	because	there	should	be	a	query	language,	either	SQL	or	something	else,
is	 critical	 for	 the	 development	 process.	 Even	 theoretically,	 we	 may	 say	 that	 the	 query
language	should	be	integrated	in	the	development	process	and	the	style	of	development	is
influenced	by	the	query	language.

WHAT	IS	SQL?	WHAT	IS	NOT	SQL?
This	sub	chapter	is	somehow	similar	with	the	one	with	the	table	design.	Considering	the
extended	audience,	including	students	at	IT	universities	and	application	programmers	with
limited	experience	in	the	field	of	databases,	I	would	like	to	describe	the	SQL	language.	I
know	 that	most	 of	my	 readers	 are	 completely	 aware	 of	 these	 basics	 and	 I	 ask	 them	 to
accept	 this	 switch,	 from	 the	 complex	 considerations	 described	 above	 to	 the	 common
description	of	the	SQL	language	that	will	follow	in	the	next	pages.

Let’s	 analyze	 the	 query	 language!	 The	 relational	 model	 of	 data	 is	 trivial:	 tables,
rows	and	columns.	For	such	a	basic	model,	there	is	a	trivial	language.	This	language	is	a
dedicated,	specific	language	for	accessing	rows	and	columns,	in	almost	any	possible	way.
SQL	is	a	query	language	and	a	standard,	followed	closely	by	almost	all	the	vendors	that
build	database	systems.

As	a	query	language,	SQL	is	a	set	of	instructions	with	a	clear	purpose,	to	allow	data
and	 metadata	 access.	 SQL	 is	 English	 like,	 and	 the	 statements	 are	 very	 natural	 and
intuitive.	The	keywords	are	so	common	that	you	don’t	need	to	think	too	much	to	see	what
they	want	to	mention!

Learning	 SQL	 is	 easy,	 even	 very	 easy	 I	might	 say.	 Still,	 to	 become	 a	 good	 SQL
professional	 you	 need	 to	 spend	 some	 years	 on	 the	 subject	 and	 this	 is	 not	 an	 easy	 task,
under	any	circumstances.

First,	as	application	developers,	we	always	need	to	be	aware	that	SQL	is	different
in	 its	 nature.	 I	 had	 some	 discussions	 with	 Java	 programmers	 or	 with	 C#	 or	 web
programmers	 that	 told	 me	 that	 SQL	 should	 not	 be	 integrated	 in	 their	 philosophy	 of
programming.	They	don’t	consider	this	programming	at	all,	claiming	that	this	is	not	what
they	 know	 about	 programming.	 Actually,	 they	 are	 right!	 SQL	 is	 indeed	 very	 different.
More	than	that,	SQL	is	not	a	classic	programming	language,	according	to	their	standards.
It	is	true	that	you	cannot	compare	SQL	with	C#	or	Java!	SQL	has	a	different	nature	and	it
is	 obviously	 something	 else.	 SQL	 is	 firstly	 a	 query	 language	 and	 any	 comparison	 is
completely	 inappropriate.	 SQL	 by	 itself	 is	 a	 separate	 language,	 apart	 from	 any	 other
classic	programming	languages.

Now,	 since	 we	 clarified	 what	 SQL	 is	 not	 -	 an	 unusual	 start	 for	 a	 definition	 but
recommended	here	due	to	some	misunderstandings	that	exist	among	some	programmers,
let	 us	 see	 what	 SQL	 is.	 I	 will	 start	 with	 the	 three	 words:	 Structured	 Query	 Language.
There	are	three	characteristics,	part	of	the	definition:

1.	 SQL	is	a	language.	Surprisingly	or	not,	SQL	is	apparently	not	a	strong
formalized	language	because	it	is	more	like	a	natural	language.	The	main
keywords	it	uses	are	common	words,	English	trivial	words	like	select,	insert,
delete.	Being	a	natural	language,	is	one	major	reason	why	SQL	is	available	to	a
large	variety	of	persons,	not	just	programmers	and	technical	people.	Many
non-programmers	are	using	it,	at	various	levels	depending	on	each	one’s	skills
and	interest.

2.	 SQL	is	a	query	language	as	part	of	a	classic	programming	language	like	PL
SQL,	for	example.	The	purpose	of	SQL	is	to	query	the	data	and	metadata.	By

querying	the	data,	I	understand	both	read	and	write	process.
3.	 SQL	is	a	structured	language.	This	means	that	SQL	is	organized	in	such	a

way	that	reminds	us	of	one	of	the	models,	the	structured	model	of
programming.	The	principles	of	structured	programming	are	satisfied	in	this
query	language	to	a	certain	extent,	and	this	is	one	reason	for	which	some
programmers	consider	that	the	use	of	SQL	is	based	on	the	use	of	structured
programming.	To	some	extent,	this	is	true.	I	will	explain	more	about	that	later.
There	are	differences	and	these	are	coming	from	the	nature	of	SQL,	from	the
nature	of	the	data.

A	 query	 language	 means	 less	 than	 a	 typical	 programming	 language	 and	 has	 a
different	 and	 particular	 scope.	Querying	 something	 is	 a	 particular	 task	 and,	 considering
this	limited	goal,	we	can	understand	the	essence	of	SQL	language.

When	we	analyze	a	data-oriented	software	application,	an	ordinary	application	like
an	inventory	system,	for	example,	or	a	software	application	for	a	hospital	or	university,	we
see	 almost	 the	 same	 components.	Of	 course,	 the	 technology	differs,	 the	methods	differ;
there	 are	 various	 distinctions	 between	 software	 applications.	When	 talking	 about	 data-
oriented	software	applications	the	purpose	is	to	populate	the	database	via	a	user	interface,
either	 web-based	 or	 maybe	 desktop-based.	 We	 have	 the	 user	 interface	 and	 the
corresponding	database	in	the	back-end.	In	most	of	the	cases,	one	of	the	main	goals	is	to
populate	the	database	with	information	and	to	access	this	information.	The	end	users	will
access	the	data	in	the	database	via	the	user	interface	and	everyone	will	be	happy!	These
goals,	 of	 reading	 and	writing	data	 in	 the	database,	 are	 achieved	by	 the	use	of	SQL.	By
data,	 we	 obviously	 understand	 business	 data,	 like	 invoices,	 items	 or	 students,	 patient’s
information	for	the	hospital,	and	any	kind	of	business	information.

As	you	all	know,	 the	data	 is	written	in	 tables.	Apart	from	this	well-known	task	of
reading	 and	writing	 the	 data,	 SQL	 is	 responsible	 for	 another	 task.	 The	 data	 within	 the
database	 can	 be	 classified	 in	 two	 categories.	A	 database	 store	data	 and	metadata.	 For
example,	 whenever	 a	 table	 is	 created,	 metadata	 information	 is	 written	 in	 the	 database
automatically.	 Any	 database	 system	 has	 a	 set	 of	 tables,	 called	 system	 tables	 or	 data
dictionary,	 and	 these	 contains	 information	 about	 the	 business	 objects.	When	 a	 table	 is
created,	the	information	that	defines	the	table	like	the	name	of	the	table,	the	names	of	the
columns,	 the	 data	 types	 for	 the	 columns,	 the	 constraint	 information,	 and	 all	 the	 design
characteristics	of	the	table	are	written	in	the	set	of	system	tables.	This	type	of	information
is	named	metadata	 information,	which	means	data	 about	data.	Therefore,	when	writing
with	SQL	in	a	relational	database,	we	understand	either	writing	data	or	writing	metadata
and	similarly	when	reading,	we	can	read	any	of	 two	types	of	data.	These	considerations
are	useful	and	allow	me	 to	continue	 to	show	the	most	 important	characteristics	of	SQL,
the	bread	of	any	database	developer	and	the	bread	of	any	application	developer	that	should
write	code	in	the	database.

There	are	several	sections	of	statements,	all	of	them	described	in	any	SQL	course.
Learning	 SQL	means	 learning	 and	 understanding	 these	 statements.	 This	 is	 very	 easy.	 I
might	 say	 everyone	 can	 learn	 these.	 Then	 the	 hard	 part	 follows;	 you	 need	 to	 start	 the
process	 of	 understanding	 the	 data.	 Start	 the	 process	 of	 data	 selection;	 start	 to	 become
friend	with	the	data.	This	task	will	take	years!

The	SQL	language	is	composed,	mainly,	by	four	sections	of	instructions,	called	sub
languages,	or	subsets	of	the	SQL	language.	The	sections	are	the	followings:

1.	 The	first	sub-language	is	the	Data	Manipulation	Language,	the	so-called
“DML”.	This	sub	section	of	SQL	is	the	section	responsible	with	the	data
access,	in	both	ways	as	active	and	passive,	by	read	and	write.	Any	instruction
responsible	with	any	of	these	two	major	actions,	read	the	data	or	write	the	data,
is	part	of	“DML”.

2.	 The	second	sub-language	is	the	Data	Definition	Language	or	“DDL”.	This	is
the	section	of	SQL	responsible	with	metadata	access.	Creating	new	objects,
like	tables	but	not	only,	creating	any	type	of	object	in	a	database,	is	an	action
that	generates	metadata	in	the	system.	When	create	a	table	or	a	view,	many
rows	are	added	in	the	metadata	responsible	with	tables	and	views.

3.	 An	additional	sub-language	is	the	Data	Control	Language	or	“DCL”.	In	this
section	of	the	language,	we	handle	the	security	within	the	database	like
assigning	privileges,	for	example.	Various	objects	are	becoming	accessible	to
the	users	and	privileges	are	given	to	these.	The	most	common	instructions	are
grant	and	revoke.

4.	 The	last	from	the	main	sections	is	the	Transaction	Control	Language	or
“TCL”.	This	section	allows	us	to	control	the	transactions,	and	this	is	a	critical
section	for	a	developer.	The	transaction	is	a	critical	concept	and	the	developer
should	have	a	perfect	understanding	of	the	transaction.	At	the	database	level,
inside	our	database	logic,	one	of	the	most	difficult	goals	is	to	have	a	consistent
control	of	transactions.	This	is	one	of	the	most	challenging	tasks	for	a	database
developer.	The	commit	and	rollback	statements	are	critical	in	any	database
logic.

Any	 of	 these	 sections	 contains	 some	 specific	 statements.	 This	 limited	 set	 of
statements	 is	 almost	 everything	 we	 need	 to	 know,	 we	 can	 say	 that	 this	 is	 the	 SQL
language!	The	first	section	is	the	most	important	one	for	a	developer.	Most	of	our	database
development	code	is	composed	from	“DML”	statements;	maybe	90%	of	the	code	written
by	a	programmer	within	the	database	is	composed	of	these	instructions.	Let’s	review	them,
very	shortly.

THE	“SELECT”	STATEMENT

If	we	pick	any	SQL	course,	and	divide	it	in	half,	we	can	see	that	the	first	part	is	dedicated
to	this	type	of	statement.	The	“select”	statement	is	dedicated	to	reading	data	(or	metadata)
of	 any	 kind.	 The	 “select”	 statement	 is	 the	 query	 itself,	 if	 we	 understand	 by	 query	 the
passive	 process	 of	 reading.	 This	 is	 the	most	 important	 thing	 for	 anyone	working	 at	 the
database	level.	The	purpose	of	reading	is	the	most	elementary	and	critical	goal	for	anyone
dealing	with	data.	The	simplicity	and	the	difficulty	of	SQL	is	the	“select”	statement;	one
able	 to	 select	 the	 data	 properly	 is	 a	 good	 database	 professional,	 especially	 a	 database
developer	or	data	analyst.

Most	of	the	SQL	statements	can	be	divided	into	a	sub	set	of	phrases,	called	clauses.
A	 clause	 is	 a	 part	 of	 a	 SQL	 statement.	 A	 “select”	 statement	 contains	 several	 possible
clauses.

1.	 The	first	clause	is	always	the	“select”	clause,	in	a	chronological	order.	In	the
“select”	clause	of	a	query,	we	specify	what	we	want	to	visualize,	which
columns	or	expressions.	An	expression	can	be	anything,	any	combination
between	various	columns	and	constants	combined	by	the	SQL	operators,	like
addition,	concatenation.	The	columns	or	expressions	are	separated	by	a
comma.	This	is	always	the	first	clause	in	a	query.

2.	 The	second	part	of	the	statement	is	always	the	“from”	clause.	In	this	clause,
we	specify	the	source(s)	of	data.	We	need	to	mention	the	list	of	tables	from
where	we	will	get	the	columns	and	expressions	in	the	“select”	clause.	The	list
of	tables	or	views	should	be	valid	objects	in	the	database.

3.	 After	that,	we	have	the	“where”	clause.	In	this	section,	we	specify	the	criteria
for	the	data,	what	are	the	conditions	that	need	to	be	satisfied	for	the	data.	For
example,	we	want	to	see	the	students	from	Paris;	we	add	criteria	for	the
locality	to	be	Paris.	The	conditions	are	separated	by	logical	operators	like
conjunction	or	disjunction.	Be	aware	of	the	distinction	between	the	SQL	logic
and	the	classic	logic.	The	SQL	logic	is	a	bit	different	type	of	logic.	In	this
logic,	there	is	an	additional	possible	choice	apart	from	true	and	false,	the	null.
The	null	means	the	lack	of	any	value.

4.	 If	there	are	groupings,	two	additional	clauses	are	required.	The	first	clause	is
“group	by”.	If	the	data	needs	to	be	grouped	by	certain	columns	or	expressions,
we	use	this	clause.	For	example,	we	want	a	list	with	the	teachers	and	the
numbers	of	courses	delivered	by	each	teacher.	For	that,	we	need	to	group	by
the	teacher	and	count	the	courses.

5.	 If	we	have	another	level	of	filtering,	at	the	level	of	groups,	a	new	clause	is
required.	This	is	the	“having”	clause.	This	clause	allows	us	to	filter	at	the	level
of	groups.	The	having	is	correlated	with	group	by	clause.

6.	 If	the	data	should	be	ordered,	the	“ORDER	BY”	clause	is	required.	This
clause	allows	us	to	sort	the	data	according	to	the	columns	or	expressions	that
we	want	to	sort.

The	 queries	 (SQL	 “select”	 statements)	 and	 their	 clauses	 are	 maybe	 the	 most
important	ones	for	a	developer	dealing	with	database	programming,	the	simplest	ones	and
the	 more	 complicated	 ones	 in	 the	 same	 time.	 Getting	 the	 data	 is	 simple	 by	 itself,
theoretically,	but	it	may	become	very	complicated	and	it	happens	very	often,	because	the
business	itself	can	be	very	complicated.

The	first	thing	we	need	to	know,	when	dealing	with	data,	we	need	to	know	how	to
query,	how	to	select	the	data	properly.

THE	INSERT,	UPDATE	AND	DELETE	STATEMENTS

The	rest	of	the	Data	Manipulation	Language	contains	the	instructions	for	writing	the	data.
As	 you	 know,	 there	 is	 one	 type	 of	 instruction	 per	 possible	 write	 operation.	 The	 insert
statement	 is	 for	 adding	 new	 information,	 the	 update	 statement	 is	 for	 editing,	 changing
information	and	the	delete	statement	is	for	deleting	data	in	the	database.

All	these	statements	are	well	known,	in	theory	and	in	practice.	What	is	important	to
me	is	that	all	these	statements	are	somehow	related	to	the	“select”	statement,	to	the	query.
In	almost	all	the	cases,	to	be	able	to	write	something,	you	need	to	be	able	to	read.

You	want	to	insert	something.	If	you	want	to	add	some	manual	new	data	then	you
should	 specify	 the	 values	 one	 by	 one	 for	 each	 column,	 and	 things	 are	 simple	 here.
However,	if	you	want	to	add	some	data	into	a	destination	from	a	source	of	data,	you	first
need	 to	 be	 able	 to	 identify	 the	 source	 of	 data.	 In	 addition,	 that	 source	 of	 data	 can	 be	 a
simple	but	can	also	be	a	very	complicated	query.	Therefore,	 there	are	two	main	types	of
insert	 statements.	 The	 “insert	 values”	 statement,	 which	 means	 manually,	 specifies	 the
values	 to	 be	 added	 for	 each	 column,	 one	 value	will	 be	 inserted	 at	 a	 time.	 This	 is	 very
straightforward.	Then	 there	 it	 is	 the	“insert	 select”	statement,	which	means	 inserting	 the
data	into	a	destination	from	a	source	of	data.	The	source	of	data	can	be	trivial	or	can	be	a
complicated	query.	The	degree	of	complexity	can	vary	from	infinite	simplicity	to	infinite
complexity.	 This	 is	 another	 example	 to	 see	 how	 SQL	 can	 be	 extremely	 simple	 and
extremely	complicated,	in	various	situations.

You	want	to	update	something.	Updates	statements	can	be	very	simple	but	can	be
very	complicated,	like	with	the	insert.	An	“update”	means	changing	some	values	for	some
columns	for	some	rows,	according	to	 the	business	requirements.	The	“update”	statement
can	be	divided	 into	 two	phases.	You	need	 to	 identify	 the	 rows	 to	be	updated.	First,	you
need	 to	execute	a	“select”	statement	and	 identify	 the	rows	 to	be	updated.	Secondly,	you
need	to	identify	the	new	values,	because,	in	an	update	statement,	you	update	certain	rows
and	you	add	new	values	for	the	columns	you	want	to	change.	For	the	identification	of	the
new	values,	you	can	specify	some	manual	values	or	you	can	get	the	new	values	from	some
simple	or	complicated	subqueries.	An	“update”	can	occurs	from	some	sources	of	data	and
identifying	 these	 sources	 can	 be	 trivial	 or	 difficult.	 An	 update	 can	 be	 extremely
complicated	sometimes.	You	may	spend	even	hours	until	you	get	it	right!

You	want	to	delete	something,	you	have	the	“delete”	statement.	This	statement	can
be	 again	 elementary	 or	 can	 be	 complex.	 Comparing	with	 an	 update,	 things	 are	 simpler
because	you	have	only	one	problem	here,	 to	identify	the	rows	to	be	deleted.	You	do	not
have	 any	 new	 values	 because	 you	 are	 simply	 deleting	 some	 data.	 Still,	 identifying	 the
rows	to	be	deleted	can	become	a	difficult	task	depending	on	the	requirements	or	it	can	be	a
trivial	matter.

To	conclude,	the	general	concept	of	query	data	can	means	either	read	or	write	and
read	 data.	 Reading	 data	means	 the	 effective	 query,	 the	 “select”	 statement.	Writing	 data
means	one	of	the	three	actions,	“insert”,	“update”	or	“delete”.	This	 is	 the	main	type	of
task	 for	 a	 database	 developer,	 one	 of	 the	 four	 described	 above.	 This	 activity	 should	 be
incorporated	 into	 the	programmer	agenda	and	 the	programmer	should	adjust	his	style	of
development	according	to	this	task	too.

THE	CREATE	AND	ALTER	STATEMENTS

Apart	 from	 the	 data,	 access	 there	 is	 the	 second	 layer,	 of	 metadata	 access.	 The	 data
definition	language	is	a	set	of	instructions	for	defining	objects,	which	means	creating	new
objects.	Let’s	say	you	want	to	create	a	new	table,	a	new	view,	or	a	new	procedure.	This	is
another	 process	where	 the	 developer	 is	 very	 active,	 and	 a	 good	 developer	 should	 know
how	to	search	in	the	layer	of	metadata	objects	in	the	database.

WHAT	ABOUT	PROGRAMMING?	IS	THERE	SUCH	A	THING	LIKE
DATABASE	PROGRAMMING?
Until	now,	the	discussion	was	centered	on	the	language	as	a	query	language.	The	topic	of
this	 book	 is	 the	 style	 of	 a	 programmer,	 the	way	he	 should	write	 and	 the	way	he	writes
software	code.	It	is	true	that	the	context	is	different,	because	I	am	analyzing	the	style	of	a
programmer	within	 the	database.	Moreover,	until	now,	 the	only	discussion	was	centered
on	SQL,	mainly	a	query	language!	This	is	a	very	disappointing	experience	for	a	dedicated
application	 developer	 for	 who	 programming	 means	 just	 classes,	 objects,	 entities,
eventually	arrays,	structures.	We	did	not	mention	a	word	of	all	these	until	now,	nothing!

As	you	know,	most	of	the	vendors	developed	their	own	true	database	programming
languages,	 apart	 from	 the	 query	 language.	 Oracle	 developed	 for	 many	 years	 their
programming	 language	called	PL	SQL.	Microsoft	developed	 the	programming	 language
for	 SQL	 Server,	 the	 so-called	 Transact	 SQL.	 IBM	 developed	 its	 own	 programming
language	for	DB2	and	this	is	SQL	PL.	As	you	know,	the	list	may	continue	with	a	variety
of	database	programming	 languages,	 specific	 for	 a	variety	of	vendors.	Any	vendor,	 any
database	system	has	its	private,	proprietary	programming	language.

All	 these	 languages	 are	 structured	 programming	 languages	 and	 they	 satisfy	 the
principles	of	structured	programming.	Any	beginner,	while	studying	PL	SQL	or	anything
else	will	learn	pretty	much	and	to	a	certain	degree	similar	things	and	features	that	he	study
in	a	 typical,	non-database	oriented	structured	programming	 language.	Any	beginner	will
start	with	the	basics.	He	will	understand	what	a	variable	is	and	how	he	may	use	it;	he	will
see	what	 data	 types	 are	 and	 he	will	 become	 aware	 of	 the	 available	 data	 types.	He	will
study	how	to	use	conditional	statements,	loops,	if–else	statements;	he	will	learn	to	handle
exceptions.	A	very	 important	 feature	of	a	procedural	 language,	 specific	 for	databases,	 is
the	cursor.	The	cursor	is	a	critical	feature	for	someone	working	in	the	database,	and	it	is	a
great	feature	because	it	allows	us,	in	combination	with	the	loops,	to	move	inside	a	data	set
from	 one	 row	 to	 another	 and	 do	 various	 manipulations.	 The	 application	 developer	 is
extremely	 happy	when	 he	 sees	 the	 cursor	 facility	 and	 he	 learns	 how	 to	 use	 this	 feature
easily	 and	 right	 away.	 Unfortunately,	 this	 feature	 is	 used	 in	 excess	 and	 is	 a	 reason	 for
many	performance	issues	in	the	databases.

We	will	see	later	more	exactly,	what	I	am	talking	about!

Afterwards,	the	developer	learns	how	to	create	procedural	objects	like	functions	and
procedures	 and	 he	 sees	 how	 a	 stored	 procedure	 is	 similar	 to	 a	 void	 function.	 The
programmer	learns	all	these	things,	he	can	use	his	familiar	programming	language	and	he
is	very	happy.	Finally,	I	am	home,	he	says	to	himself!

Like	a	parenthesis,	 I	had	met	people	with	experience	 in	a	certain	database	system
being	devoted	to	that	database	system.	These	persons	considered	themselves	programmers
for	that	specific	database	only.	For	example,	Joe	is	a	PL	SQL	developer	while	Joanna	is	a
Transact	SQL	developer.	They	would	never	move	 to	another	database	system	under	any
circumstance!	This	is	a	bad	decision,	in	my	opinion.	Let’s	see	why.

All	programming	 languages	 I	 shortly	described	before	are	actually	a	mixture.	PL
SQL,	for	example,	is	a	language	composed	of	two	types	of	instructions:	SQL	 statements
and	 procedural	 statements.	 All	 these	 programming	 languages	 are	 a	 kind	 of	 query-

programming	languages,	due	to	their	mixed	nature.	In	the	database,	in	a	stored	procedure
or	 a	 function,	 you	 are	 always	 in	 the	 position	 to	 execute	 either	 a	 SQL	 statement	 or	 a
procedural	 statement.	Whenever	 you	want	 to	 query	 something,	mostly	 to	 read	 or	write
data,	 you	 are	 doing	 SQL.	 The	 database	 programming	 language	 is	 an	 extension	 of	 the
query	 language,	 is	 not	 like	 a	 classic	 programming	 language.	 It	 is	 a	 big	 difference!	The
programmer	needs	to	be	capable	to	query	the	data:	that	is	his	first	task.	Anything	else	is
secondary.

Another	advantage	of	SQL	is	the	fact	that	it	is	a	standard.	This	means	that	the	set
of	instructions	is,	more	or	less,	available	in	a	very	similar	or	even	identical	manner	from
one	programming	language	to	another.	Every	database	programming	language	uses	SQL
in	its	own	way.	Still,	most	of	the	syntaxes	are	very	close	to	the	standard.	For	example,	a
select	 statement	 is	 almost	 the	 same	 in	 Oracle	 and	 SQL	 Server	 and	 in	 others	 databases
systems.	 Same	 considerations	 apply	 to	 an	 update	 or	 an	 insert	 statement.	 There	 are
variations	 and	 differences	 but	 it’s	 very	 easy	 to	move	 and	write	 from	 one	 programming
language	to	another.	Under	any	circumstances	you	don’t	need	to	fill	uncomfortable	when
switch.	 Moving	 from	 Oracle	 to	 SQL	 Server	 or	 vice	 versa	 implies	 some	 differences.
However,	the	movement	is	acceptable	for	any	programmer.	The	fact	that	SQL	is	a	standard
and	 that	 most	 of	 the	 vendors	 try	 more	 and	 more	 to	 follow	 it	 is	 a	 great	 advantage	 for
database	developers	and	not	only.	They	can	easily	switch	from	one	system	to	another.	In
most	 of	 the	 cases,	writing	 a	 SQL	 statement	 in	 one	 database	 system	 as	Oracle	 could	 be
executed	 similarly	or	 even	 identically	 in	others	 systems	 like	SQL	Server	or	DB2.	From
this	 perspective,	 for	 database	 programmers,	 it	 is	 very	 comfortable	 and	 accessible	 to
change	projects	from	one	database	system	to	another:	they	can	use	almost	the	same	SQL
statements.	 Still,	 sometimes	 there	 might	 be	 differences	 between	 database	 systems	 and
sometimes	the	SQL	statements	cannot	be	written	identically.	In	this	case,	the	programmer
needs	 to	 investigate	 and	 adapt	 one	SQL	 statement	 from	one	database	 system	 to	 another
database	system.	Portability	should	not	be	a	goal	 in	 itself.	 I	would	say	 that,	 if	 I	need	 to
choose	 between	 portability	 and	 performance,	 I	 would	 always	 choose	 performance.
Sometimes	 performance	 means	 writing	 SQL	 according	 to	 the	 specific	 syntax	 and	 not
necessarily	 according	 to	 the	 standard.	 For	 example,	 in	 SQL	 Server,	 the	 updates	 are
particular	and	they	cannot	be	migrated	to	Oracle	or	others	databases	systems	even	if	it	is
pure	SQL.	 In	 this	 case,	 after	 some	years	 of	 experience	with	 both	 systems	 and	handling
various	applications	in	both	Oracle	and	SQL	Server,	I	always	choose	performance.	After
all,	 it	 is	not	very	difficult	 to	translate	one	SQL	to	another	if	 the	performance	is	better.	If
there	is	a	similar	performance,	portability	is	desired.	Anyway,	the	existence	of	a	standard
assures	maximum	of	portability	by	itself.

To	 conclude,	 do	 we	 have	 something	 like	 database	 programming?	 The	 answer	 is
definitely	yes.	However,	 the	programming	language	means,	maybe,	80%	query	language
and	maybe	20%	the	extension.	A	good	database	developer	is	a	very	good	SQL	developer,
or	 so	 he	 should	 be.	 The	 programming	 languages,	 the	 extensions,	 were	 made	 for	 the
developers	to	be	able	to	do	certain	things	that	cannot	be	accomplished	using	basic	SQL.
The	set	of	procedural	statements	should	be	used	when	the	problems	cannot	be	solved	with
a	simple	SQL	statement.	Database	programming	mostly	means	SQL	development,	because
data	access	is	our	goal	when	we	are	in	the	database.	In	addition,	data	access	is	SQL!

PROGRAMMING	IS	A	PRACTICAL	ACTIVITY!
Software	 development	 is	 a	 highly	 practical	 occupation.	 Most	 of	 the	 programmers	 are
practical	persons	and	not	scientists.	The	most	difficult	part	of	their	job	is	the	struggle	with
one	 business	 or	 another,	 trying	 to	 understand	 it.	 On	 the	 other	 hand,	 they	 learn	 one
language	or	another,	they	continue	to	improve	their	skills	and	they	continue	to	learn	new
features	while	these	are	requested	by	their	daily	activities.

Normally,	the	IT	universities	should	be	aware	of	these	realities.	From	what	I	know,
there	 are	 serious	 differences	 between	 education	 systems.	Without	 judging	 any	 of	 these
systems,	 I	 can	 objectively	 say	 some	words	 about	 some	 tendencies.	 In	 some	 places,	 the
programming	 courses	 are	 highly	 theoretical,	 too	 far	 away	 from	 the	 practical	 reality	 of
software	development.	Some	of	 them	are	maybe	good	 theoreticians,	brilliant	minds,	but
far	away	from	the	practical	world	of	the	programmers.

Maybe	some	courses	are	not	closed	to	the	real	life,	are	too	theoretical,	too	scientific.
Most	of	the	examples	are	taken	from	math	and	are	highly	non-practical	examples.	Some
students	 are	not	 aware	 that,	 after	 they	will	 finish	 their	 IT	University	 and	 they	will	 start
working,	they	will	do	something	else.	I	am	not	saying	math	is	not	important,	after	all,	it	is
actually	 our	 foundation.	 Math	 develops	 our	 minds	 as	 nothing	 else	 does.	 All	 these
programming	 languages	 have	 been	 built	 by	 mathematicians	 and	 logicians	 and	 we	 owe
enormous	gratitude.

Nevertheless,	 doing	 software	 development	 means	 something	 else,	 the	 goals	 are
highly	 practical	 and	 the	 situations	 we	 face	 are	 mostly	 practical,	 common	 and	 human
situations.	 Our	 world	 is	 not	 perfect	 like	 the	math	 world	 and	 the	 students	 should	 be	 in
accordance	with	these	realities.

Math	is	the	foundation	but	this	does	not	mean	it	is	going	deeper	than	necessary.	It	is
one	 thing	 to	 be	 a	 mathematician	 or	 even	 a	 math	 teacher,	 and	 something	 else	 to	 be	 a
programmer	for	a	software	company.	Well,	if	you	are	a	programmer	working	for	NASA	or
for	a	mathematical	research	institution,	you	are	maybe	an	elite	programmer	and	you	have
the	privilege	to	do	a	special	type	of	work.	Please	accept	my	sincere	congratulations!	Still,
most	of	 the	programmers	are	not	part	of	 those	elite!	Most	of	 the	programmers	work	 for
banks,	 for	 factories	and	companies,	 for	hospitals	and	health	 industry,	 for	 tourism	sector.
Most	of	the	programmers	are	practical	people	and	not	scientists.

I	was	doing	database	programming	for	many	years	and	the	math	that	I	used	in	my
career	was	high	school	level,	very	rarely	more	than	that.

Math	is	a	world	in	itself.	It	is	almost	a	perfect	world	and	certainly	a	very	beautiful
world.	Programming	 is	our	practical	world:	our	economy,	our	education,	our	sports,	our
industry,	our	hobbies,	everything.

A	programmer	needs	to	be	able	to	understand	different	businesses	and	to	adapt	his
knowledge	to	all	these.	He	should	be	one	of	us,	not	a	savant	far	away	from	our	world.

If	someone	wants	to	build	a	software	application	for	an	inventory	system,	he	needs
to	understand	the	inventory	business.	He	may	not	have	the	deeper	understanding	that	an
analyst	has,	but	at	least	a	sufficient	understanding.

If	you	want	to	build	an	application	for	a	game,	you	need	to	understand	that	game,
you	need	to	understand	the	rules	that	the	game	needs	to	follow;	you	need	to	play	the	game.

This	 is	 software	 development	 and	 this	 is	 programming	 life	 experience.
Programming	is	not	science,	programming	is	not	math	and	programming	is	not	differential
equations!	Programming	is	 life,	programming	means	 the	ability	 to	 live	 in	our	world	and
the	ability	to	understand	and	implement	one	business	or	another.	This	is	actually	the	main
reason	 for	 which	 programmers	 are	 valuable	 people:	 this	 is	 why	 programmers	 are	 so
appreciated	these	days.	An	engineer	learns	and	implements	his	own	technology,	a	doctor
learns	all	his	life	to	cure	and	heal	others,	and	a	taxi	driver	knows	his	own	roads	like	no	one
else.	A	programmer	needs	to	be	able	to	understand	each	ones	business	and	he	needs	to	be
aware	of	how	to	implement	that	business	into	a	software	application.

A	programming	language	is	not	a	difficult	thing	by	itself.	It	is	true	that	not	anyone
can	understand	and	write	programs	in	a	certain	programming	language	or	another,	certain
skills	 are	 required.	You	 need	 to	 have	 a	 logical	mind,	 to	 be	 able	 to	 understand	what	 an
algorithm	is	and	implement	it	in	a	language.	You	need	to	have	a	solid	math	background,
but	it	is	not	necessary	to	be	a	mathematician.	These	skills	are	not	as	rare	as	many	people
might	 think.	 I	met	many	people,	 young	people	 that	were	 simply	afraid	of	programming
and	 not	 enough	 self-confident	 in	 their	 own	 skills	 considering	 aprioristic	 that	 they	 will
never	be	able	to	understand	and	write	code.	Still,	very	often,	 their	skills	were	more	than
acceptable.	 This	 is	 one	 paradox	 for	 our	 world:	 it	 is	 well	 known	 that	 this	 is	 a	 good
occupation	nowadays.

A	 large	 numbers	 of	 teenagers	 avoid	 moving	 into	 our	 area	 due	 to	 lack	 of	 self-
confidence.	 I	 have	 some	 good	 news	 for	 all	 these	 persons:	 programming	 is	much	 easier
then	you	believe,	just	try	to	see	that	you	can	do	it!

What	 it	 is	difficult	 in	programming	 it	 is	not	 the	 language	 itself	and	not	 the	 set	of
theoretical	knowledge	that	you	learn	in	universities.	The	difficulty	consists	in	the	ability	to
understand	what	is	to	be	implemented,	in	the	ability	to	live	and	model	the	life.	Because	all
the	businesses	that	are	modeled	by	our	applications	are	part	of	our	society,	are	parts	of	our
life.	What	is	more	complex	in	this	world	than	us?

Moreover,	 the	 database	 section	 is	 perhaps	 one	 of	 the	most	 practical	 sections	 in	 a
software	application.	The	SQL	language	 itself	 is	 so	practical	and	easy	 to	use,	exactly	 in
the	rhythm	described	above.

SHOULD	WE	WRITE	IN	THE	DATABASE
IN	A	CERTAIN	WAY?
Now,	 let’s	 move	 back	 to	 our	 goal:	 database	 development.	 The	 students,	 the	 young
programmers,	 the	 application	developers	with	not	 too	much	background	 in	 the	database
development,	all	these	categories	should	be	able	to	understand	and	deal	with	the	data.

The	data	is	almost	everywhere,	in	every	business,	and	the	programmers	are	dealing
with	it	all	 the	time.	In	most	of	the	cases,	the	data	is	relational.	Despite	any	appearances,
the	data	requires	a	certain	type	of	understanding	and,	for	that,	a	different	kind	of	effort	is
required.	The	database	development	is	that	kind	of	programming	that	deals	with	data	in	a
relational	format,	rows	and	columns.	We	need	it,	whether	we	like	it	or	not,	and	we	need	to
see	if	our	styles	are	appropriate	for	this	purpose.	When	I	say	our	styles,	I	am	referring	to
classic	styles	that	we	are	familiarized	with	from	the	user	interface	level.

Most	 of	 the	 programmers	 are	 following	 the	 models	 they	 learned	 in	 universities.
Only	that	the	relational	model	and	the	database	are	somehow	different	and	particular	and,
in	many	cases,	a	different	style	is	required.	For	example,	let’s	see	the	reality	of	a	factory	or
company.	This	means	the	sum	of	processes	that	are	handled	in	a	factory,	the	multitude	of
documents	that	are	used	in	the	factory,	the	different	sets	of	calculations	that	are	done	in	the
production	business	inside	the	factory.	All	these	summarize	the	reality	of	the	factory.	We
want	 to	build	a	 software	application	 to	 reflect	 the	 reality	of	 this	enterprise.	For	 that,	we
may	use	different	models.	Most	of	the	realities	contain	the	segment	of	data.	In	most	of	the
cases,	relevant	business	data	needs	to	be	stored	in	a	dedicated	space,	called	the	database.
The	 list	 of	 materials,	 with	 the	 multitude	 of	 material	 attributes,	 like	 the	 type	 of	 the
products,	 different	 classifications,	 the	 list	 of	 components	 or	 bills	 for	 materials	 for	 the
finished	 products,	 the	 list	 of	 accountancy	 documents,	 company	 documents	 and	 others.
Some	 of	 these	 documents	 may	 be	 generated	 from	 others.	 Considering	 this	 example	 of
production,	it	 is	clear	that	the	segment	of	data	storage	is	one	of	the	most	critical,	maybe
the	most	important	one.	We	build	nice	user	interfaces,	desktop	or	web	and	one	of	the	main
goals	is	to	generate	a	consistent	database.

We	have	the	user	interface	and	we	have	the	database.	The	developer	spends	time	in
any	of	these.	He	can	do	his	work	in	the	same	manner	in	both	sections,	at	the	user	interface
and	at	the	database	level.	Alternatively,	he	can	do	his	work	differently	when	he	is	involved
in	the	database	layer	and	he	can	try	to	use	a	distinct	style	in	concordance	with	the	nature
of	data.	Any	types	of	the	two	can	be	considered	as	database	programming,	but	my	opinion
is	that	the	second	approach	is	fundamentally	better.

I	think	that	we	should	write	in	the	database	in	a	certain	way.	Moreover,	the	way	we
should	write	couldn’t	be	derived	directly	 from	 the	 style	we	are	used	with	 from	 the	user
interface	 level	 and	 from	 the	 two	 classic	 models.	 The	 fact	 that	 this	 “database	 way”	 is
particular	and	is	derived	from	the	nature	of	data	does	not	make	the	difference	and	is	not	a
counter	argument.	The	main	reason	for	this	paper	is	to	illustrate	this	way	and	to	promote
it.

THE	SQL	SHOP	METAPHOR!
As	you	are	perhaps	aware,	I	am	the	supporter	of	the	second	approach.	Try	to	handle	the
data	component,	the	database,	in	its	own	way	and	use	differently	the	common	models	and
methods	that	you	are	using	at	the	user	interface	level.	When	I	say,	“use	differently”	I	am
not	referring,	of	course,	to	an	absurd	and	total	exclusion.	We	don’t	need	to	forget	that	SQL
itself	 is	 a	 structured	 language,	 so	 it	 follows	 the	 principles	 of	 structured	 programming,
although	 the	 meaning	 of	 structured	 is	 not	 exactly	 the	 same.	 However,	 there	 is	 a	 big
difference	 in	style	and	 this	 is	what	 I	want	 to	explain.	This	 is	why	I	promote	and	what	 I
want	to	prove	in	this	book,	this	is	what	my	experience	taught	me	so	many	times	during	my
projects.	If	we	follow	the	second	approach,	we	will	start	concluding	our	topic	and	we	will
enter	more	 or	 less	 in	 the	world	 of	 true	 database	 developers,	we	will	 pass	 into	 the	SQL
area.

I	hope	you	will	excuse	 the	apparent	deviation	 from	 the	neutral	 style	of	 this	paper
and	I	want	to	invite	you	to	step	into	an	imaginary	world	of	metaphors	and	analogies.

Imagine	you	fell	asleep	and	you	found	yourself	transported	into	a	fantasy	shop.	This
is	the	SQL	shop.

Welcome	to	my	shop!	Please	take	your	shoes	off!

Try	 to	breath:	you	will	be	amazed	to	see	 two	dominant	keywords:	simplicity	and
naturalness.	This	makes	a	difference.

We	are	inside	the	shop	now.

Welcome	 to	my	SQL	shop,	 I	 say	again.	We	have	many	 things	 to	 see,	 to	visit	 and
eventually	 to	 buy.	 There	 are	 so	 many	 windows,	 each	 of	 them	 with	 so	 many	 potential
presents.	Look,	on	 the	 left	 I	 see	some	chocolate!	There	are	so	many	 types	of	chocolate,
from	different	countries.	I	am	going	to	look.	Let’s	see	what	is	written	on	this	one!	What
about	 the	one	on	the	left,	 I	am	very	curious	about	 it!	 I	 like	white	chocolate,	 let	me	look
again,	please	step	back	and	let	me	see!	I	will	choose	some	chocolates,	I	have	two	children
and	I	eat	 too	much	chocolate	 too!	I	need	to	quit	soon.	Still,	now	I	am	in	a	dream,	I	can
afford	to	eat	tones	of	chocolate.	I	will	read	the	names	for	different	types	of	chocolates:	I
will	 select	 different	 brands	 and	 see	 the	 different	 instructions	 written	 on	 the	 chocolate
paper.	I	will	choose	some	of	the	brands	and	insert	them	into	the	basket.

Oops!	I	already	used,	so	naturally,	some	of	 the	most	 important	keywords	 in	SQL:
select,	 insert.	 First,	 I	 need	 to	 have	 the	 possibility	 to	 read	 and	 understand,	 to	 select	 the
information	before	choosing	something	to	buy.	I	read	the	instructions	on	different	products
in	 the	 shop,	 I	 am	 looking	 at	 the	 design	 of	 the	 products,	 I	 analyze	 the	 utility	 of	 each
product,	and	I	am	looking	in	my	pockets	to	be	reasonable	with	my	budget,	of	course.	This
is	the	select	operation,	or	the	read	phase.	No	one	is	able	to	write	without	being	able	to	read
first.

When	I	decide	what	to	buy,	I	choose	the	selected	products	and	insert	them	into	my
basket.	 The	 basket	 is	 filled	 with	 the	 inserted	 products.	 Oops!	 This	 inserted	 keywords
sound	familiar	to	some	SQL	Server	developers.	Is	it	similar	to	a	temporary	table	attached
to	any	insert	trigger?	Isn’t	it	fascinating	that	we	are	in	such	a	natural	topic	of	a	shop,	trying
to	buy	something,	and	we	are	already	in	the	position	to	discuss	SQL?	You	will	see	all	over

the	 place	 in	 this	 book	why	SQL	 is	 so	 valuable:	 due	 to	 the	 naturalness	 of	 the	 language!
SQL	is	really	a	part	of	our	live!

The	database	is	like	a	shop.	I	will	name	it	the	SQL	shop.	We	can	assimilate	the	data
in	a	database	with	the	list	of	goods	in	a	supermarket,	or	with	the	list	of	books	in	a	library.
Whenever	we	enter	a	market	or	a	shop,	we	have	the	possibility	to	see,	to	view,	read	and
understand	the	utility	of	the	products,	the	benefits	and	the	disadvantages.	This	is	the	select
phase.	 This	 is	 the	 read	 section.	We	 can	 also	 fill	 our	 basket	 with	 some	 products,	 some
chosen	goods.	This	might	be	called	the	insert	phase.	We	insert	some	chosen	products	into
the	basket.	We	can	also	choose,	after	reflecting	and	analyzing	our	budget,	to	dismiss	some
products	 before	 we	 pay.	 In	 this	 case,	 we	 pick	 the	 product	 and	 we	 put	 it	 back	 in	 the
window.	We	delete	it	from	our	list	with	bought	products.	This	delete	keyword	seems	very
familiar,	isn’t	it?	We	may	also	decide	to	replace	an	object	with	another	similar	object,	and
we	need	to	update	our	shopping	list	again.	Everything	can	change	until	 the	moment	we
arrive	to	the	cash	desk	and	pay.	This	period	of	indecision	can	take	some	time,	until	we	are
completely	decided	what	to	buy	and	end	our	shopping	list.	This	period	of	indecision	can
long	even	one	day	if	two	or	three	women	gather	in	a	huge	mall	and	decide	to	spend	their
entire	day	there	watching,	shopping	and	chatting	together.	It	is	even	possible,	at	a	certain
moment,	 for	one	of	 these	women	 to	 receive	an	emergency	phone	call	 from	someone.	 In
this	case,	they	need	to	leave	the	shop	because	an	urgent	matter	occurs	and	her	presence	is
mandatory.	 So	 she	 rollbacks	 everything,	 she	 leaves	 the	 basket	 in	 the	 middle	 of	 the
supermarket	and	quickly	runs	to	see	what	happened.	In	this	case,	it	is	possible	that	one	of
her	mates,	 or	maybe	 her	 husband,	 chooses	 to	 take	 the	 uncompleted	 basket	 and	 quickly
commit	the	wife’s	shopping	list.

Is	 there	 someone	 talking	 technically	 here?	 I	 don’t	 think	 so,	 do	 you?	 This	 is	 the
beauty	of	SQL!	When	someone	calls	us	technical,	I	start	to	laugh.	I	do	not	consider	myself
a	technical	person,	even	if	many	people	that	used	to	work	with	me	considered	me	so.

Therefore,	 I	 am	 inside	 this	 shop,	 and	 I	 have	 the	goal	 to	 fill	 a	 basket	 and	buy	 the
chosen	products.	For	the	shopping	period,	I	look	at	some	of	the	products,	analyze	different
products,	add	them	into	the	basket,	eventually	replace	some	products	with	different	ones,	I
ultimately	remove	some	items	from	the	basket.	I	can	do	this	basket	update	for	some	time.
Finally,	I	decide	to	go	and	buy	the	chosen	products.	I	am	going	to	the	cash	desk	and	pay
the	items.

This	shop	is	the	database.	The	items	are	the	rows	in	different	tables,	the	tables	may
be	 considered	 as	 the	brands.	The	 shopping	period	 is	 a	 database	 transaction.	During	 this
period,	 I	 have	 the	 freedom	 to	 add,	 remove	 or	 change	 items	 in	 the	 basket.	 Like	 in	 the
database,	I	have	the	option	to	select,	update,	insert	or	delete	the	rows.	After	the	payment,
changes	 are	 not	 permitted	 anymore	 to	 the	 basket,	 unless	 a	 new	 shopping	 session	 starts.
The	transaction	commit	is	the	payment.

This	analogy	between	a	shop	and	a	database,	between	the	list	of	items	in	a	basket
and	 the	 list	 of	 affected	 rows	 in	 a	 transaction,	 between	 the	 payment	 and	 the	 transaction
commit,	 this	 analogy	 wants	 to	 show	 the	 simplicity	 of	 the	 database	 model,	 and	 the
naturalness	of	SQL,	as	we	will	continue	to	see	along	the	pages	of	this	book.

AN	EXAMPLE	OF	BAD	PRACTICE!
I	 have	 met	 on	 a	 project	 a	 case	 that	 can	 be	 written	 in	 anyone’s	 memories.	 I	 was	 on	 a
contract	where	 I	 needed	 to	 build	 a	 data	migration	 system	between	 two	 sources	 of	 data.
There	was	 an	 existing	 system	 of	 that	 type	 and,	 starting	 from	 this,	we	were	 required	 to
build	 a	 new	 data	 migration	 interface.	 I	 analyzed	 this	 migration	 system	 and	 I	 tried	 to
understand	what	was	going	on	there.

For	 example,	 there	 was	 a	 very	 simple	 step	 inside	 this	 migration	 system:	 some
configuration	values	were	required	in	a	certain	table.	One	table	was	the	target	for	this	step,
and	 three	 or	 four	 columns	 needed	 to	 be	 updated	with	 some	 configuration,	 highly	 static
values.	This	table	was	configured	once	and	these	configuration	values	will	be	used	all	over
the	 place	 in	 the	 corresponding	 application.	 These	 values	 were	 not	 to	 be	 changed
afterwards.	Let	me	explain	you	how	this	step	was	build!	A	stored	procedure	was	written
for	this	purpose	and	this	was	normal	because	the	configuration	values	were	critical	values
so	the	step	was	very	distinct.	Nevertheless,	looking	at	the	stored	procedure,	I	was	forced	to
spend	some	time	to	understand	the	goal	of	this	step.

What	I	found	was	unbelievable!	Some	structures	were	declared	and	used,	with	some
types,	one	cursor	was	used	and	everything	was	so	complicated!	When	I	realized	that,	the
actual	goal	of	this	step	was	simply	to	add	three	or	four	values	in	a	table	and	add	one	row
with	some	configuration	data	I	started	to	laugh!	I	said	to	myself	that	this	is	not	possible.
The	 programmer	 that	 wrote	 that	 code,	 I	 am	 referring	 to	 a	 specific	 PL	 SQL	 code,	 was
coming	from	the	user	interface	and	he	was	decided	to	completely	ignore	the	fact	that	he
was	programming	in	a	database!	Even	more,	he	was	not	aware	that	he	was	in	the	process
of	building	a	data	migration	system!	He	uses	absolutely	the	same	style,	the	same	patterns,
like	in	Java	or	C++	or	whatever	application	language	he	was	used.

Once	I	realized	that	the	goal	of	this	particular	step	was	actually	to	add	one	line	in	a
table,	I	simply	rewrite	the	procedure	completely,	and	I	simply	added	the	insert	statement.
The	entire	data	migration	 interface	was	written	 in	 this	 style,	many	 structures	 and	 types,
cursors	over	cursors!

That	data	migration	system	was	a	very	good	example	of	a	bad	practice,	a	very	good
picture	of	what	is	happening	if	a	row-by-row	approach,	and	a	pure	procedural	style	is	used
in	a	data	migration	application.	The	PL	SQL	language	was	used	like	a	typical	and	classic
language.	That	programmer	tried	to	develop	in	a	pure	Object-oriented	style!

I	 can	 tell	 you	what	 that	was.	 It	was	 a	 disaster!	 First,	 the	 performance	was	 at	 the
minimum	 level.	 That	 software	 application	 had	 a	 very	 poor	 performance	 and	 whatever
indexes	 or	 whatever	 performance	 features	 were	 used	 these	 were	 useless	 due	 to	 the
inappropriate	 style	 of	 programming.	When	 I	 rebuilt	 the	 data	migration	 interface	 and
built	 the	 new	 one,	 I	 completely	 rewrote	 everything.	 More	 than	 that:	 everything	 was
rewritten	 in	 pure	 SQL.	 I	 had	 maybe	 one	 or	 two	 cursors	 in	 the	 entire	 data	 migration
interface.	There	were	no	structures,	no	arrays	and	no	cursors:	just	pure	SQL!

After,	the	performance	of	the	new	data	migration	utility	was	at	the	maximum	level
and	 I	 challenge	 someone	 to	 make	 it	 faster	 in	 a	 different	 way.	 Even	 more,	 the	 data
migration	system	was	very	simple	for	anyone	to	understand.	It	made	a	huge	difference!

Many	data	oriented	software	applications	are	not	correctly	written.	The	performance
is	 the	 first	 one	 that	 suffers	 but	 also	 the	 code	 is	 very	 difficult,	more	 complicated	 than	 it
should	be.	When	you	are	 in	 the	database	and	when	your	 task	 is	 to	manipulate	data,	you
need	 to	 think	 SQL,	 you	 need	 to	 think	 in	 data	 sets	 and	 not	 follow	 the	 row-by-row
approach.	You	need	to	try	to	understand	the	relational	model	and	appreciate	the	clarity	of
this	 model	 and	 the	 naturalness	 of	 SQL.	 Some	 programmers	 consider	 that	 they	 are	 too
important	 in	 what	 they	 are	 doing	 and	 they	 cannot	 go	 down	 to	 a	 simpler	 model	 and
implement	things	particularly	in	that	way.	Others	are	not	effectively	aware	of	this	model
and	of	what	 they	can	do	with	SQL,	they	don’t	realize	that	 they	need	to	think	differently
and	 they	 are	 using	 the	 same	 style	 that	 they	 are	 using	 in	 the	 other	 sections	 of	 the
applications.

The	 database	 programming	 languages	 are	 just	 extensions	 for	 SQL.	 PL	 SQL	 is	 a
programming	language	but	is	an	extension	for	SQL.	A	good	database	programmer	knows
that	SQL	is	the	first	priority	and	the	extension	(the	set	of	procedural	statements)	is	more
like	 a	 backup	 solution	 for	 SQL.	 The	 philosophy	 is	 simple:	You	 have	 a	 problem:	 try	 to
solve	it	 in	SQL.	If	 this	is	not	possible,	go	to	the	extension	and	use	the	set	of	procedural
statements.	Why	 using	 a	 cursor	 when	 you	 can	 solve	 your	 problem	with	 a	 simple	 SQL
statement?

Coming	back	to	our	shop,	we	are	with	our	family	at	the	supermarket.	Imagine	that
we	want	to	buy	20	bottles	of	wine,	30	bottles	of	water.	We	will	have	a	party	soon!	Try	to
imagine,	for	a	moment,	that	you	will	fill	the	basket	30	times	for	the	wine	and	20	times	for
the	water.	You	will	pay	50	times	in	total.	How	much	will	you	stay	at	the	queue?	Maybe
you	will	 stay	 50	minutes,	 adding	 one	minute	 per	 product.	 I	 believe	 the	 cashier	will	 go
crazy	and	will	consider	me	abnormal.	Don’t	you	think	so?	Who	could	have	this	crazy	idea
in	 a	 supermarket?	A	 normal	 person	will	 fill	 the	 basket	 once	 and	will	 pay	 the	 set	 of	 20
bottles	of	wine	and	the	second	set	of	30	bottles	of	water.	He	will	try	to	fill	one	basket	and,
if	it	will	not	be	possible,	he	will	fill	it	2	times	and	pay	two	times.	Anyway,	there	will	be
quite	a	difference	in	terms	of	waste	of	time.	This	is	what	is	happening	when	developers,
good	developers,	coming	from	the	general	models	of	the	user	interface	and	coming	from
general	and	complete	programming	languages	like	Java	and	C	are	trying	to	use	their	own
style	in	SQL.

Now	you	imagine	that	you	have	an	update	statement	and	you	will	affect	20	products
in	the	update	instruction.	There	is	a	quite	a	number	of	programmers	that	would	consider
normal	 the	 fact	 that	 the	 rows	 are	 affected	 one	 by	 one,	 in	 a	 cursor	 or	 not:	 this	 is	 not
important	at	this	moment.	Instead	of	thinking	that	they	do	have	a	set	of	rows	that	needs	to
be	affected	and	try	to	affect	that	set	of	rows	in	a	simple	SQL	statement	they	start	declaring
structures,	 variables,	 eventually	 try	 to	 use	 complex	objects	 only	because	 they	 cannot	 or
they	don’t	want	to	think	SQL!

I

Chapter	3

THE	HOLISTIC	VISION	AGAINST	THE	DATA
THE	CONCEPT	OF	DATA	SET

will	continue	 to	analyze	and	define	 the	rest	of	 the	concepts.	Some	of	 these	I	already
remind	during	the	previous	chapters	without	explicitly	discuss	about	them	yet.	I	go	on

and	try	to	explain	another	notion,	maybe	the	most	important	one	that	supports	the	style	of
development	I	am	promoting!

There	is	a	concept	behind	this	style	and	I	don’t	claim	this	concept	is	new!

I	know	that	the	market	starts	to	become	increasingly	more	aware	of	this	concept	and
ask	 for	 it,	 consequently	 for	 the	 style	 I	 am	 promoting.	 The	 concept	 that	 defines	 the
promoted	style	of	development	is	the	concept	of	data	set.

Firstly,	the	concept	is	related	to	SQL	language	that	is	mainly	a	query	language.	The
purpose	of	the	language	is	straightforward,	data	access.

Secondly,	 data	 in	 a	 relational	 database	means	 a	mixture	 of	 rows	 and	 columns	 or
expressions,	in	a	simplistic	vision	but	quite	accurate.	In	most	of	the	cases	when	accessing
data,	we	are	committed	to	identify	a	combination	of	rows	and	columns	or	expressions,
and	that	is	exactly	the	definition	of	a	data	set.

If	 there	is	something	that	can	be	defined	as	a	permanent	thing	to	be	noticed	when
dealing	with	 data	 and	 database	 programming,	 that	 something	 is	 a	 set	 of	 data.	 There	 is
always	 a	 data	 set;	 there	 is	 always	 a	 combination	 of	 rows	 and	 columns	 or	 expressions
whenever	we	are	dealing	with	data.	 “Cherchez	 la	 femme”	 says	Alexandre	Dumas	and	 I
believe	we	can	exclaim	similarly,	whenever	we	are	doing	database	development:	search
for	 the	 data	 set!	 All	 the	 mysteries	 and	 solutions	 of	 database	 development	 rely	 in	 the
proper	treatment	and	fair	recognition	of	the	data	set.

The	data	sets	can	be	taken	from	a	variety	of	tables	linked	between	them	by	joins,	the
data	 sets	 can	 be	 combined	 between	 them	 by	 set	 operators	 and	 the	 data	 sets	 can	 be
identified	in	a	variety	of	ways	that	are	not	relevant	for	the	moment.	The	SQL	developer	is
the	magician	that	knows	how	to	get	the	best	from	the	data	set.

The	set-based	approach	means	 to	 always	 be	 aware	 that,	when	 programming	 the
database,	data	sets	should	be	affected	and	the	main	concern	in	the	development	process	is
the	data	set.

There	 is	 an	 enormous	 potential	 of	 situations	 and	 millions	 of	 circumstances	 and
cases	can	be	imagined.

Many	examples	will	 follow	and	 I	will	 try	 to	 illustrate	 the	set-based	approach	 as
well	as	I	can.	Don’t	try	to	imagine	miracles	and	don’t	try	to	imagine	complicated	things!

Most	 of	 the	 practices	 that	 will	 follow	 will	 illustrate	 this	 major	 characteristic	 of
database	 programming	 and	 SQL.	 Because	 database	 programming	 means	 firstly	 SQL
development	and	SQL	are	the	bread	and	the	butter	of	any	vendor	programming	language,

either	PL	SQL	or	anything	else!	The	main	activity	in	the	database	is	the	process	of	query.
We	 are	 querying	 the	 data	 continuously	 because	 this	 is	 the	 essence	 of	 database
programming.	We	 always	 try	 to	 get	 a	 combination	of	 rows	 and	 columns	or	 expressions
taken	from	various	tables,	we	always	try	to	get	a	set	of	data.	This	is	the	secret	of	SQL,	and
more	than	that,	this	is	the	secret	of	database	programming:	try	to	think	in	sets	of	data	and
do	 not	 think	 atomically,	 whenever	 it’s	 possible.	 Do	 not	 try	 to	 divide	 the	 data	 set	 into
smaller	units	unless	you	have	an	authentic	business	reason	and	a	technical	limitation	that
stops	you	from	affecting	the	data	set	as	a	whole.

Let’s	try	to	have	the	following	vision	against	the	data:	see	the	data	as	an	integer	and
not	 as	 a	 sum	of	decimals.	 If	 the	data	 set	 corresponds	 to	one	 row:	 this	 is	 as	 a	 particular
situation.	Always	try	to	find	the	set	of	data,	try	to	think	in	waves	of	data	like	when	you	are
looking	at	the	sea	and	you	see	the	waves	coming	one	after	the	other.

When	you	see	a	wave	coming	from	the	sea	you	never	imagine	any	division,	you	just
see	 the	wave	and	admire	 it!	Looking	closely	you	will	see	many	things	 inside	 it	and	you
can	divide	the	wave	into	smaller	divisions	according	to	various	classifications.	However,
initially	you	don’t	care	about	that!	Try	that	with	the	data	set	and	you	will	think	like	a	true
database	developer!

THE	HOLISTIC	APPROACH	VERSUS	THE
ATOMIC	APPROACH	–	AN	INTRODUCTION
I	am	not	a	theoretician	but	I	admire	theoreticians!	They	have	such	a	great	mind	and	they
are	capable	of	things	beyond	ordinary	people	like	me.	The	theoreticians	are	able	to	build
foundations.	 These	 foundations	 are	 the	 base	 for	 human	 creations	 everywhere.	 Software
programming	is	a	new	world,	at	the	history	scale.	It	is	a	child,	a	growing	one!	It	is	already
so	much	history	in	software	development	that	we	can	spend	ages	to	see	all	of	it	and	try	to
understand	 what	 was	 happening	 here	 during	 some	 decades	 of	 activity.	 The	 idea	 of
programming	came	 from	sciences	 like	math	and	 logics	and	 it	became	so	common	 these
days	that	people	are	not	amazed	by	it	anymore.	There	are	so	many	artificial	programming
languages	on	the	market	today	and	the	list	continues	to	expand!

Every	programming	language	 is	a	miracle,	 in	one	way	or	another.	 In	addition,	 the
programmers	 that	 have	 the	 possibility	 to	 write	 pieces	 of	 software	 are	 like	 artists	 and
linguists,	 in	 a	 certain	 way,	 not	 just	 pure	 technicians.	 A	 good	 programmer	 may	 be	 a
technical	person	but	may	be	an	artist	too!

Every	 new	 programming	 language	 that	 we	 learn	 to	 use	 is	 like	 a	 new	 natural
language	 that	we	 learn	 to	 speak,	 in	 a	 certain	way.	 Some	 languages	 are	 simpler	 to	 learn
than	others	 are.	 In	 a	 similar	 fashion,	 some	programming	 languages	may	be	 easier	 to	be
taught	than	others	may.	It	is	a	matter	of	subjectivity	and	experience,	a	matter	of	taste	too.
Some	languages	and	frameworks	can	be	learned	by	analogy	and	comparison.

The	principles	are	similar	in	many	programming	languages	and	this	makes	our	lives
easier	than	multi-lingual’s…

Every	 programming	 language	 has	 its	 own	 principles	 and	 the	 programmers	 try	 to
understand	and	follow	these	during	their	daily	activity.	Speaking	about	the	set	of	database
programming	languages,	like	PL	SQL	or	Transact	SQL,	there	is	another	great	advantage,
the	portability.

This	is	the	advantage	of	the	SQL	language.	This	query	language	is	included	in	every
programming	 language	and,	even	 if	 there	are	 some	differences	 in	 the	 syntaxes,	 learning
one	makes	us	eligible	for	learning	another	one	quite	easy.

The	procedural	facilities	are	also	similar	in	the	syntax,	declaring	and	using	a	cursor
in	 Oracle	 and	 SQL	 Server	 or	 DB2	 is	 not	 a	 big	 difference,	 you	 don’t	 need	 to	 consider
yourself	PL	SQL	developer	and	to	remain	in	the	area	of	PL	SQL	necessarily.

Apart	from	that:	in	these	specific	programming	languages,	there	is	a	principle	that
should	be	followed:	 the	principle	of	data	set.	 If	 there	 is	something	 to	be	explained	as	a
principle	of	work	in	a	dedicated	database	programming	language,	it	is	the	set	of	data.	A
programmer	who	writes	to	the	database,	regardless	of	the	area	where	it	comes	from,	must
realize	the	need	to	identify	the	data	set	in	everything	he	does.

Let’s	 assume	 that	we	are	 running	a	query	now.	We	 just	 saw	 the	 familiar	message
about	the	number	of	rows	affected;	let’s	say	we	receive	five	rows.	Five	rows	affected	may
be	interpreted	in	many	ways.	We	may	think	at	five	details,	try	to	analyze	the	details,	and
think	to	affect	detail	by	detail	in	a	certain	way.	Alternatively,	we	may	think	the	unity	of	the
five	in	one,	like	an	integer.

The	set	of	five	rows	can	be	seen	as	a	whole,	or	can	be	seen	as	a	sum	of	details.	I	can
see	this	number	of	rows	affected	in	its	multiplicity:	I	can	see	this	data	as	a	kind	of	union
composed	of	five	rows.	The	application	developer	is	tempted	to	see	the	multiplicity	and	is
tempted	 to	divide	 the	 set	 into	 five	pieces.	Of	course,	he	will	be	happy	 to	open	a	cursor
right	 away.	By	 contrast,	 the	 database	 developer	will	 always	 see	 the	 data	 set,	 he	will	 be
aware	of	it	and	he	will	think	SQL.	This	means	he	will	try	to	see	the	data	set	and	ignore	the
fact	that	the	data	set	can	be	divided	into	five	pieces.	The	application	developer	is	not	SQL
oriented	by	default,	he	is	oriented	to	search	for	the	details,	his	models	are	not	set	oriented
and	he	is	trying,	by	default,	to	divide	and	to	use	the	procedural	features	of	the	languages.

SQL	 is	 data	 set	 oriented,	 SQL	 is	 a	 database	 specific	 language	 and	 SQL	 is	 not
incorporated	 in	 the	paradigm	of	 the	 classic	models	of	programming	 that	 the	 application
developer	knows	and	applies	in	his	daily	work.	The	application	developer	should	make	an
effort	and	he	needs	to	 try	 to	 integrate	SQL	in	his	style,	he	should	try	 to	be	aware	of	 the
data	set.	The	application	developer	should	do	that	if	he	wants	to	have	a	good	performance
in	the	database	and	especially	if	he	is	in	the	position	to	write	in	specific	interfaces	where
his	intended	goal	is	to	transfer	data	between	systems.

Considering	these	circumstances,	I	will	define	two	approaches	that	can	be	used	in
database	programming.	These	are	illustrated	by	the	role	of	the	set	of	data	in	the	process	of
database	development.	These	approaches	are	the	ones	that	map	the	development	styles	and
one	developer	or	another	should	use	a	certain	style	according	to	the	approach	he	follows.

The	first	is	the	atomic	approach.	By	contrast,	I	will	name	its	opposite	 the	holistic
approach.	 These	 are	 the	 possible	 visions	 against	 the	 data	 in	 database	 programming.
Consequently,	 the	 styles	 of	 development	 will	 be	 highly	 influenced	 by	 these.	 The
programmer	that	follows	the	atomic	vision	is	 the	programmer	that	 thinks	atomically,	 the
programmer	that	does	not	think	SQL.	If	you	try	to	think	in	a	non-SQL	fashion	means,	you
will	not	accept	the	data	set	as	the	main	entity	that	should	be	firstly	identified	and	handled
by	 the	 development	 process.	 The	 atomic	 vision	means	 to	 divide	 everything	 and	 to	 see
things	 atomically,	 especially	 at	 the	 row	 level.	 The	 developer	 does	 not	 accept	 anything
apart	from	what	he	knows,	he	knows	structured	programming,	he	knows	scalar	functions
and	maybe	 row	 triggers	 and	 he	 sees	 columns	 per	 individual	 rows	 as	 parameters	 for	 his
functions	and	procedures.	He	is	very	happy	with	the	cursor	facility	and	he	believes	that	the
purpose	of	a	cursor	 is	 to	allow	him	 to	move	everything	at	 the	 level	of	a	 row	and	scalar
variable	so	it	will	allow	him	to	read	and	write	almost	everything	per	row.

The	holistic	approach	is	the	opposite	approach.	The	programmer	is	aware	of	another
kind	of	entity	apart	from	what	he	knows	from	classic	programming:	he	knows	that	SQL	is
something	 else	 and	 he	 understand	 that	 the	 data	 set	 is	 an	 integer,	 a	 unity	 and	 he	 thinks
holistically.

One	has	a	data	set	and	he	wants	to	affect	that	set	with	any	possible	means.	He	has
SQL	as	the	tool	to	accomplish	that.	As	a	last	resource,	seeing	that	SQL	does	not	allow	him
to	do	his	 task	 and	 to	 affect	 the	data	 set	 holistically,	 he	will	 divide	 everything	using	 the
cursor	and	he	will	solve	his	problem	in	a	different	way.

The	 two	 styles	 of	 development	 are	 the	 ones	 associated	with	 the	 two	 visions:	 the
holistic	vision	respectively	the	atomic	one.

I	will	 try	 to	 show	and	prove	 that	 a	 set	 of	 data	 should	 to	be	 analyzed	 in	 its	 unity,
atomicity,	and	needs	not	 to	be	analyzed	 in	 its	multiplicity.	 In	most	of	 the	 situations,	 the
data	set	can	be	identified	as	such	and	affected	in	its	unity.	The	data	set	should	be	targeted
and,	finally,	affected	by	our	actions,	write	or	read.	Most	of	the	time	when	working	in	the
database,	 in	a	classic	but	mostly	in	a	specific	application,	we	are	affecting	data	sets	 in	a
continuous	process.	We	should	try	to	be	aware	of	the	data	set;	we	should	always	think	at	it
and	try	to	do	not	divide	it	into	smaller	pieces	or	rows,	whenever	is	possible.

Let’s	remember	 the	famous	concept	of	“entity”,	so	dear	 to	application	developers.
In	classic	programming,	everything	is	more	or	less	an	entity	or	part	of	an	entity.	The	entity
is	a	very	complex	concept	and	the	programmers	are	always	aware	of	the	belongings	to	a
certain	 entity	 when	 they	 are	 doing	 their	 staff.	 In	 the	 database,	 the	 role	 of	 the	 entity	 is
somehow	taken	by	the	data	set.	The	data	set	is	the	entity	and	in	a	relational	database,	we
are	usually	positioned	in	a	certain	data	set.

This	 is	 the	 holistic	 approach	 and	 the	 developer	 that	 thinks	 holistically	 is	 the	 true
SQL	 developer.	 He	 is	 the	 true	 database	 developer.	 In	 addition,	 this	 is	 that	 kind	 of
transformation	that	an	application	developer	should	be	capable	of	when	switching	to	the
database.	I	believe	that	a	good	programmer	can	be	both	and	can	do	things	at	a	good	level
in	both	application	and	database.	In	addition,	I	believe	that	the	programmer	should	try	to
think	differently	and	should	try	to	adapt	his	style	when	moving	to	the	database.

Another	purpose	of	 this	 book	 is	 to	 explain	 the	main	principle	 that	 anyone	 should
have	when	tries	to	think	SQL.	This	is	mostly	required	for	any	person	that	is	in	the	position
to	write	some	pieces	of	code	into	the	database.	He	needs	to	try	to	think	SQL!	Because	the
dedicated	 language	for	communicating	with	 the	data	 is	SQL,	 its	syntaxes	are	perfect	 for
interrogating	 rows	 and	 columns,	 and	 in	most	 of	 the	 situations	 when	we	 are	 within	 the
database	and	we	are	doing	programming,	we	are	simply	accessing	the	data	in	one	way	or
another.	 I	 want	 to	 read	 something	 or	 I	 want	 to	 write,	 I	 use	 SQL.	 That’s	 why	 I	 was
surprised	when	I	heard	database	developers	considering	themselves	PL	SQL	developers	or
PG	SQL	developers.	To	me,	a	 true	database	developer	 is	a	SQL	developer.	Moreover,	 a
SQL	developer,	a	good	one,	needs	to	be	able	to	think	SQL.	Thinking	SQL	means	thinking
in	sets	of	data.	 I	cannot	 imagine	anyone	saying	he	 thinks	PL	SQL	or	Transact	SQL!	No
one	 can	 actually	 imagine	 that!	Still,	 it	 should	be	obvious	 to	 anyone	what	 thinking	SQL
means.

I	will	continue	to	insist	on	the	advantages	of	the	SQL	language.	More	than	that,	the
type	 of	 actions	 that	 we	 are	 generally	 doing	 in	 the	 database	 is	 restricted	 to	 some	 basic
statements.	Let’s	review	them.	We	are	reading	some	data	using	a	select	statement,	we	are
adding	 something	using	an	 insert	 statement,	we	 are	 editing	 something	using	 an	update
statement	 or	we	 are	 deleting	 something	using	 a	delete	 statement.	This	 is	what	 database
programming	is,	this	is	pretty	much	it.	In	almost	all	the	situations,	we	want	to	affect	a	set
of	rows,	one	single	set.	A	good	SQL	developer	is	always	aware	of	the	data	set:	he	is	trying
to	search	for	the	data	set.	This	is	the	holistic	vision:	this	means	thinking	SQL	and	this	is
true	database	development!	Only	when	the	programmer	sees	that	the	problem	he	needs	to
solve	 cannot	 be	 done	 by	 affecting	 the	 entire	 data	 set	 in	 one	 SQL	 statement,	 whatever
complicated	this	one	might	be,	the	programmer	will	open	a	cursor,	will	move	the	details	in
variables	and	do	his	logic.	Only	in	the	situations,	very	rare	I	dare	to	say,	when	the	data	set

cannot	be	handled	as	a	whole,	the	programmer	will	split	the	data	set	after	its	details	and,
in	this	case,	he	will	use	the	procedural	facilities.

The	database	programmer	is	not	a	limited	programmer	that	does	not	accept	anything
else	apart	from	the	data	set	and	his	precious	SQL,	like	his	precious	ring!	He	is	not	absurd!
The	database	developer	knows	the	principles	of	structured	programming:	he	knows	how	to
use	cursors,	records,	variables,	while	statements	and	the	rest	of	procedural	facilities.	He	is
able	to	solve	the	problem	even	if	the	data	set	vision	does	not	match	all	the	time.	The	data
set	is	not	indestructible!	It	can	always	be	divided!	Sometimes	the	data	set	must	be	splatted
into	 many	 pieces.	 In	 certain	 situations,	 the	 set	 of	 data	 must	 be	 divided	 into	 smaller
components,	 even	 data	 rows.	 The	 holistic	 vision	 means	 accepting	 that	 these	 situations
might	occur	 and	 the	holistic	vision	accepts	 the	possibility	of	 the	division,	whenever	 it’s
necessary.	Still,	this	division	will	occur,	in	the	holistic	approach,	only	after	everything	was
tried	for	a	holistic	solution.

The	atomic	path	means	the	tendency	to	divide	things	right	away	and	to	try	to	solve
things	procedurally	by	default.	No	attempt	is	made	generally	for	the	data	set	to	be	handled
and	the	data	set	is	not	actually	seen	as	a	unity.	The	atomic	vision	is	very	common	among
many	application	developers	and	this	is	what	I	try	to	show	here,	that	this	vision	should	be
reconsidered.

A	 holistic	 vision	 against	 the	 data	 that	 will	 generate	 a	 certain	 distinct	 style	 of
development	in	the	database	and	this	is	highly	recommended,	in	my	opinion.	This	holistic
vision	is	reflected	in	a	concept,	the	well-known	concept	of	data	set.	Having	that	holistic
vision	 means	 adopting	 the	 set	 of	 data	 as	 a	 primary	 criteria	 of	 development.	 We	 are
developing	our	 logic	 in	 the	databases	 in	data	sets.	First,	we	should	 identify	 the	data	set.
After	that,	we	analyze	and	see	if	it	can	be	affected	in	one	single	SQL	statement.	If	that	is
possible,	and	very	often	it	is,	SQL	is	incredible	strong	and	it	covers	an	amazing	number	of
situations,	the	problem	can	be	solved	very	often	at	the	level	of	the	entire	set.	This	is	the
holistic	 vision	 and	 the	 set	 prioritization.	 This	 is	 the	 set-oriented	 model	 of	 database
development.

A	DIFFERENT	MODEL	–DOES	THIS	MODEL
DESERVE	TO	BE	PROMOTED	INDEED?
The	 education	 systems	 are	 an	 important	 component	 in	 the	 IT	 Industry.	 The	 universities
teach	the	students	about	classes,	entities,	objects,	and	everything	else!	The	Object-oriented
models,	the	declarative	programming,	structured	programming	paradigms	are	described	in
a	variety	of	courses.	There	are	many	models	and	paradigms	and	each	of	them	should	be
taught	to	the	future	generations	of	programmers.	These	principles	and	models	will	guide
the	future	programmers	in	their	activity	and	will	influence	their	work	and	our	lives.

Let’s	move	back	to	the	database	area!	It	is	considered	that	database	programming	is
part	of	structured	programming.	Apart	from	typical	programming	and	the	classic	models,
and	among	other	things,	there	are	courses	about	databases	where	relational	databases	are
explained.	The	SQL	 language	 is	 on	 the	 top	of	 the	 list.	 Sometimes	SQL	 is	 explained	by
itself	 in	a	dedicated	course	or	 it	 is	described	as	part	of	a	vendor	programming	 language
like	PL	SQL.	Programing	 languages	as	PL	SQL	can	be	described	 in	 two	 steps,	 first	 the
query	language	and	then	the	extension	with	all	the	procedural	facilities.

I	believe	that	in	the	universities,	there	are	not	enough	discussions	about	the	styles	of
programming	 and	 this	 is	 understandable.	 It	 is	 a	 vague	 concept	 and	 it	 involves	 a	 certain
degree	of	subjectivity.	Still,	no	one	can	argue	that	these	various	styles	of	development	are
not	important	and	that	our	applications	are	not	influenced	by	this	vague	concept	of	style.
Only	that,	because	is	a	subjective	matter,	it	is	ignored.	These	styles	are	determined	by	the
programming	 concepts	 and	models,	 among	 other	 things.	Among	 the	 premises	 for	 these
styles	of	development,	there	are	scientific	concepts	like	models	and	paradigms.

The	style	of	development	is	 influenced	by	the	subjectivity	of	the	programmer	too.
Some	programmers	are	Java	based	and	they	are	comfortable	with	Java,	others	they	do	like
“INFORMATICA”	 and	 visual	 development	 and	 they	 are	 comfortable	 with	 it.	 Still,	 the
subjectivity	 of	 the	 programmer	 is	 influenced	 by	 the	 concepts.	 There	 is	 a	 vicious	 circle,
therefore.

Regarding	 our	 interest,	 I	 believe	 that,	 when	 talking	 about	 databases	 in	 the
universities,	 the	 concept	 of	 data	 set	 should	 be	 properly	 described	 as	 one	 of	 the	 main
concepts	 in	database	programming,	maybe	the	most	 important	one.	However,	 in	most	of
the	cases,	the	discussions	about	a	different	concept	like	the	set	of	data	that	stays	behind	a
certain	style	of	programming	are	not	considered	as	vital,	 assuming	 these	are	accepted.	 I
believe	that	the	concept	is	well	known	but	is	not	considered	as	vital,	as	it	should	be!

I	consider	that	the	paradigm	of	set-oriented	programming	should	be	promoted	in
the	database	courses	 in	universities	and	explained	with	priority	 to	 the	students.	Many	of
them	will	work	on	both	sides	during	their	careers,	they	will	work	at	the	application	level
using	 Java	or	C#	but	 they	will	 also	work	 at	 the	database	 level	 using	Oracle	or	DB2.	 If
familiarized	with	the	data	set	and	the	holistic	approach,	it	will	be	easier	for	them	to	adapt
to	one	style	to	another.	Even	more,	some	of	them	will	really	want	to	specialize	in	database
development.	 For	 these	 students,	 the	 understanding	of	 the	 importance	 of	 the	 data	 set	 in
their	development	is	critical.

For	 example,	 let’s	 pick	 up	 a	 university	 where	 databases	 are	 supported	 and	 are
considered	 as	 a	 valuable	 path	 for	 the	 students.	 In	 this	 university,	 the	 database

programming	courses	 should	contain	a	 second	part,	 after	 the	 classic	SQL	course,	where
the	capabilities	of	SQL	are	explained.	In	this	second	part,	I	would	discuss	about	database
development	and	the	importance	of	the	data	set	and	the	holistic	vision	of	development.	I
would	try	to	explain	that	a	different	style	should	be	used	in	the	database	according	to	the
set-based	approach	and	the	holistic	vision	against	the	data.

Apart	 from	 the	 universities,	 I	 believe	 that	 these	 discussions	 are	 very	 important
inside	 software	 development	 teams	 too.	 There	 are	 often	 mixed	 teams	 of	 developers,
application	and	database	developers.	Secondly,	there	are	always	personal	preferences.	The
software	 applications	written	 by	 the	 developers	 are	 influenced	by	 these	 preferences	 and
this	is	a	reality	too.

I	believe	that	discussions	about	one	style	of	development	or	another	might	be	very
useful	 inside	 development	 teams.	 The	 performance	 of	 the	 software	 applications	will	 be
better	 because	 a	more	 appropriate	 style	 in	 any	 section	will	 definitely	 increase	 the	value
and	 the	quality	of	 the	written	software.	The	database	 is	always	behind,	but	 the	end	user
feels	it	all	the	time	because	of	the	response	timings.

What	 is	 more	 important	 nowadays	 apart	 from	 the	 fair	 implementation	 of	 the
business?	 Name	 something	 more	 important	 than	 performance!	 Besides,	 a	 good
performance	 in	 the	database	 is	 firstly	done	by	an	appropriate	style,	a	set-oriented	style,
based	on	a	holistic	vision	against	the	data.

Let’s	move	from	the	application	developer	to	the	specialized	database	developer	and
its	 role	 in	 the	 market.	 I	 believe	 that	 his	 role	 will	 increase	 and	 I	 hope	 I	 am	 not	 too
subjective	in	this	statement!	After	many	years	of	indetermination,	I	would	say	that	finally,
the	 database	 developer	 has	 its	 own	 status,	without	 being	 in	 the	 shadow	 of	 a	DBA	or	 a
developer,	 that	 knows	 Java	 or	 C	 and,	 among	 others,	 he	 knows	 some	 SQL	 enough	 to
manage	 himself.	You	will	 find	more	 and	more	 specialized	 database	 developers	 and	 the
good	ones	are	always	aware	of	the	data	set,	of	the	set-oriented	style	of	development	that
they	are	definitely	use!

Still,	many	people	consider	that	database	programming	is	not	necessarily	a	distinct
path	 and	 it	 does	 not	 require	 a	 distinct	 style.	 Many	 people	 believe	 that	 an	 application
developer	can	do	SQL	easily	without	any	need	for	any	change	in	his	style	of	work.	There
are	no	official	arguments	for	a	different	style	and	there	are	so	many	programmers	doing
everything,	both	application	and	the	database.	Even	more,	there	are	so	many	programmers
doing	everything	in	the	same	manner!	In	a	classic	system,	things	may	be	acceptable	even
with	a	procedural,	atomic	style.	This	might	be	true	especially	if	the	activity	is	at	the	lowest
level.	Still,	who	knows	how	and	what	is	the	performance	at	both	levels?	Even	more,	in	a
specific	 interface	 like	 a	 replication	 system	 where	 the	 goal	 is	 to	 move	 data	 between
systems,	 if	 the	 developers	 are	 working	 atomically	 is	 a	 tragedy,	 the	 most	 catastrophic
scenario	that	we	can	imagine.

Unfortunately,	sometimes	SQL	is	seen	as	a	kind	of	toy,	as	a	kind	of	light	language
that	can	be	learned	by	anyone	with	a	minimal	effort.	To	a	certain	degree,	it	is	a	toy,	and	it
is	true	that	the	basics	can	be	accomplished	by	anyone;	the	language	is	extremely	natural
and	intuitive.	Still,	that	is	the	first	stage	of	learning.	Try	to	imagine	that	you	have	a	course
separated	 in	 many	 modules	 where	 the	 first	 module	 is	 very	 easy	 and	 accessible.	 The

followings	are	more	and	more	difficult	and	finally,	after	graduation,	there	is	no	difference
against	 another	 course	where	 the	 first	module	was	more	 difficult	 and	not	 so	 accessible.
This	is	SQL.

From	this	perspective,	the	concept	of	data	set	makes	a	difference	in	graduating	the
next	modules.	A	programmer	that	understands	this	concept	and	tries	to	follow	it	is	a	good
database	developer.	For	example,	take	an	application	developer	that	is	doing	his	mixture	in
a	classic	application	and	he	is	doing	the	switch	from	the	application	to	the	database.	If	he
will	be	capable	to	change	his	style	and	he	will	be	able	to	adapt	his	work	from	one	section
to	another,	he	will	have	only	advantages	from	his	work.	I	really	believe	that	the	set-based
approach	and	the	holistic	style	of	development	deserve	to	be	promoted	more	intensively,
considering	the	advantages	of	a	much	better	performance,	easier	ways	to	debug,	code	that
is	more	intelligible	and	many	others.

We	will	analyze	one	more	example.	We	assume	we	want	to	see	the	list	of	customers
that	 satisfy	 certain	 conditions,	 for	 example	 customers	 from	London,	UK.	 If	we	want	 to
think	SQL,	we	should	think	that	we	have	a	set	of	customers.	This	is	the	SQL	vision!	We
do	not	consider	the	customers	in	their	multiplicity	but	we	consider	the	list	of	customer	as
one	list.	This	vision	is	opposed	to	the	atomic	vision	according	to	which	we	consider	 the
customers	 one	 by	 one	 and	 try	 to	 affect	 these	 atomically,	 customer	 by	 customer.	This	 is
what	I	consider	as	being	the	principle	of	SQL.	We	consider	the	multiplicity	as	unity,	like
when	we	have	a	book	with	one	hundred	pages	we	are	not	thinking	at	the	pages	but	at	the
book,	we	have	one	book	not	hundred	pages.

Inside	the	projects,	the	project	managers,	the	technical	leaders	have	their	important
role.	Considering	various	styles	of	development	in	various	sections	can	be	a	good	decision
for	 them	 if	 they	 really	want	 to	 have	 a	 good	 performance	 and	 good	 quality	 in	 the	 code
written	 in	 their	 teams.	 Of	 course,	 it	 is	 difficult	 to	 say	 that	 the	 programmers	 should	 be
convinced	 to	 adopt	 a	 certain	 style	 or	 another.	 I	 don’t	want	 to	 judge,	 it	 is	 absurd.	 I	 still
consider	that,	participating	to	the	discussions	with	the	software	programmers	and	trying	to
make	 sure	 that	 everyone	will	 try	 to	write	 in	 a	 certain	way	 that	 the	performance	will	 be
optimal	is	a	thing	that	can	be	done	by	the	leaders	of	the	projects.

Consequently,	I	believe	that	the	set-oriented	model	and	the	holistic	vision	deserve	to
be	promoted	more	 in	 the	universities	and,	even	more,	 inside	 the	 software	companies.	A
large	portion	of	our	code	relies	on	the	databases:	the	vendors	continuously	try	to	add	new
features	 for	 the	performance	 section.	Performance	 is	 always	 critical.	What	 can	 be	more
unpleasant	 than	 waiting	 and	 waiting	 for	 the	 data	 to	 be	 accessible	 to	 the	 end	 users?
Moreover,	one	 reason	 for	a	bad	performance	 in	 the	database,	one	big	 reason,	 is	 the	 fact
that	 the	style	of	development	 is	not	adapted	to	the	realities	of	 the	databases.	Despite	 the
fact	that	SQL	is	such	a	trivial	language,	and	it	is	at	least	the	basics,	the	data	set	is	not	so
clearly	seen	as	a	goal	to	be	reached	by	the	developers.

PERFORMANCE	AND	PORTABILITY	-	TWO
ADVANTAGES	FOR	THE	HOLISTIC	APPROACH.
I	 know	 that	 most	 of	 the	 programmers	 are	 very	 practical	 persons	 and	 they	 want	 to	 see
written	code.	I	understand	them	and	I	respect	their	desire.	Soon	this	will	follow!	I	will	try
to	illustrate	the	concepts	described	above	and	the	two	alternative	programming	styles	by
showing	many	examples	as	I	can.	I	will	use	two	of	the	most	important	database	systems,
Oracle	and	Microsoft	SQL	Server.	I	choose	these	two	database	management	systems	for
my	 examples	 for	 two	 simple	 reasons.	 First,	 they	 are	 among	 the	most	 popular	 database
management	systems.	Secondly,	my	experience	is	related	to	these	two	systems	more	than
to	others.	Most	of	my	projects	were	related	to	Oracle	and	SQL	Server,	but	not	exclusively.
I	have	experience	in	classic	applications	and	in	specific	applications	like	data	warehouse,
replication	 and	data	migration.	These	 are	my	 favorite	 types	 of	 projects	 and,	working	 in
these	 projects,	 I	 was	 able	 to	 work	 at	 my	 style	 and	 adapt	 it	 more	 and	more	 to	 the	 set-
oriented	approach.

Nevertheless,	the	good	news	is	that	the	examples	are	very	easy	to	reproduce	in	any
other	database	management	system.	Here	I	will	show	you	 the	advantage	of	 the	standard
and	 the	 advantage	 of	 the	 fact	 that	 most	 of	 the	 SQL	 statements	 are	 almost	 the	 same,
identical	or	similar	in	almost	all	the	relational	database	systems.	This	advantage	will	allow
any	developer	that	wants	to	try	the	exercises	and	practice	in	his	own	relational	system:	like
Oracle,	SQL	Server,	DB2,	PostgreSQL,	MySQL,	and	Teradata!	He	can	practice	most	of
the	exercises	with	minor	modifications.

This	 is	 another	 argument	 in	 the	 favor	 of	 the	 holistic	 approach	 although	 I	 do	 not
consider	 it	 as	 the	 most	 important	 one.	 The	 argument	 is	 portability.	 It	 is	 good	 for
companies	 building	 software	 applications	 for	 various	 database	management	 systems	 for
different	 customers:	 portability	 is	 an	 attractive	 word	 for	 the	 managers.	 If	 you	 are	 in	 a
software	 company,	 where	 one	 application	 is	 written	 in	 three,	 four	 systems	 like	 Oracle,
SQL	Server,	My	SQL,	and	then	portability	might	be	important.	Writing	SQL	allows	you	to
keep	the	code	similar	from	one	system	to	another.	Working	procedurally	means	accepting
very	different	pieces	of	codes	because,	even	if	the	procedural	languages	are	quite	similar,
there	 are	 still	 different	 syntaxes	 and	 it	 takes	 some	 time	 to	 translate	 the	 code	 from	 one
system	to	another!

The	 examples	 in	 the	 atomic	 approach	 are	 taken	 from	 the	 procedural	 area	 of	 the
systems.	 These	 are	 highly	 particular	 and	 non-standard,	 being	 non-SQL	 and	 procedural.
Working	atomically	 forces	you	 to	move	your	center	of	 interest	 in	 the	procedural	area	of
the	 database	 language.	 In	 the	 atomic	 way,	 the	 logic	 is	 procedural	 and	 specific	 to	 the
programming	language,	which	materializes	in	a	serious	effort	in	the	translation	process,	if
required.

Working	 SQL	moves	 you	 to	 the	 SQL	 area,	 close	 to	 the	 standard	 and	 to	 the	 true
database	vision.	Therefore,	you	will	see	that,	if	you	will	try	to	reproduce	some	examples
from	one	system	to	another	it	will	be	much	easier.	Sometimes	it	may	be	even	very	easy,
sometimes	the	logic	and	the	syntax	will	be	identical.

I	am	discussing	about	SQL,	I	am	trying	to	show	how	to	think	SQL.	This	makes	us
more	 independent	 on	 the	 database	 system.	 In	 addition,	 if	 we	 are	 working	 in	 an	 IT

company	that	creates	software,	it	is	very	easy	for	us	to	maintain	various	logics	in	different
systems	if	we	are	working	SQL	based	and	not	procedurally	based.	Still,	I	know	there	are
many	database	programmers	having	exclusive	experience	 in	one	database	system.	Some
of	 them	believe	 they	are	Oracle	or	PL	SQL	developers,	maybe	SQL	Server,	or	Transact
SQL	developers.	Actually,	these	should	be	considered	database	developers	and	any	switch
from	one	database	system	to	another	should	be	relatively	accessible.	Moving	from	Oracle
to	 SQL	 Server	 or	 from	 SQL	 Server	 to	 Oracle	 or	 to	 another	 database	 system	 like	 DB2
should	 not	 be	 a	 difficult	 task.	 Having	 SQL	 as	 a	 standard	 makes	 our	 life	 easier	 and	 I
encourage	any	developer	of	 this	 type	 to	 consider	 itself	 a	neutral,	 database	developer,	 or
even	more	a	SQL	developer.	The	programming	 languages	are	 similar	 so	any	movement
from	PL	SQL	to	Transact	SQL	or	SQL	PL	is	quite	accessible.

Even	 from	 the	 procedural	 facilities,	 things	 are	 not	 very	 difficult.	 Most	 of	 the
examples	can	be	easily	migrated	and	executed	in	any	relational	database	system.	We	have
the	 same	 types	of	programming	objects,	we	have	 similar	 structures	of	blocks	 inside	 the
objects;	cursors	are	declared	and	used	 in	similar	ways.	 In	 the	 field	of	programming,	 the
database	developers	have	a	huge	advantage.	For	a	database	programmer,	one	experience	in
any	database	system	is	a	gate	to	any	other	database	system	and	the	database	programmers
need	to	have	more	confidence	in	themselves	regarding	their	ability.	For	example,	a	large
category	of	experienced	SQL	Server	programmers,	are	not	confident	 to	switch	to	Oracle
projects.	Of	course,	an	initial	effort	is	required	to	understand	the	differences	but	this	is	not
that	 difficult.	 In	 the	 beginning,	 the	 programmer	 is	 a	 bit	 slower	 and	 he	 needs	 an	 initial
period	 of	 accommodation	 with	 the	 new	 database	 system.	 However,	 the	 change	 is
acceptable	 and	 the	 developer	 can	 adapt	 quite	 easily	 to	 the	 new	 database	 system.	 The
switch	 is	especially	straight	 forward	 if	 the	style	of	 the	programmer	 is	SQL	oriented	and
not	procedural	oriented.	A	lot	of	code	is	pretty	much	the	same.	Of	course,	we	do	not	need
to	exaggerate	in	anything.	The	portability	that	SQL	gives	us	is	a	great	advantage.	Writing
mainly	SQL	and	being	in	concordance	with	the	standard	allows	us	to	write	very	similarly
in	different	database	systems	and	this	is	a	great	advantage!

Still,	sometimes,	for	the	sake	of	portability	we	may	use	some	syntax	that	is	not	very
good	from	the	performance	point	of	view.	Even	if	we	do	write	SQL,	there	are	many	ways
of	writing	SQL	too.	There	are	various	SQL	syntaxes	and	some	can	be	more	standard	and
others	more	specific.	Sometimes	a	specific	SQL	syntax	has	a	better	performance.	A	good
example	is	the	SQL	Server	particular	form	of	update.	This	syntax	has	a	better	performance
and,	despite	the	fact	that	is	particular	to	SQL	Server,	it	is	better	to	be	used.	A	compromise
between	performance	and	portability	is	required.	I	always	vote	for	performance!

I	want	 to	 conclude	 the	 discussions	 about	 portability	 and	 performance	 in	 database
development	 and	 share	 my	 opinions	 gathered	 mostly	 from	 years	 after	 years	 of
development	 inside	 various	 databases.	 Portability	 means	 firstly	 to	 write	 SQL	 and	 not
procedural,	due	 to	 the	advantages	of	 the	 fact	 that	SQL	 is	a	 standard	and	all	 the	vendors
have	similar	syntaxes.	So	the	first	rule,	to	try	to	write	SQL	and	not	procedural,	is	a	golden
rule	for	both	performance	and	portability.	The	second	conclusion	is	referring	to	the	SQL
code	 itself.	The	code	 is	 similar,	 sometimes	 identical	 in	various	database	 systems.	When
the	code	is	similar,	there	might	be	many	acceptable	syntaxes,	some	of	them	similar	others
identical.	Sometimes	you	may	try	to	use	the	specific	syntaxes	and	avoid	the	identical	ones
because	very	often	the	specific	syntaxes	have	better	performance.	A	good	example	is	the

specific	form	of	update	and	delete	in	SQL	Server.	That	one	does	not	work	in	Oracle.	Still,
I	encourage	you	 to	use	 it	and	 leave	 the	syntax	with	subqueries	because	 the	performance
for	 the	 specific	 “DML”	 is	 better.	 Therefore,	 my	 advice	 for	 you	 is	 this	 one:	 choose
performance	in	front	of	portability.	Anyway,	compromises	are	usually	required.

VISUAL	DEVELOPMENT	VERSUS	SQL	DEVELOPMENT
About	 databases,	 we	 are	 dealing	 with	 data	 and	 we	 are	 analyzing	 the	 two	 styles	 of
development.	We	analyze	the	atomic	approach	versus	the	holistic	approach.

We	analyze	 the	application	developer	non-aware	of	 the	concept	of	set	of	data	 that
thinks	 atomically	 against	 the	SQL	developer	 aware	of	 the	 fact	 that	he	needs	 to	 think	 in
data	 sets	 and	 holistically.	 Both	 of	 them	 are,	 in	 a	 certain	 way,	 classic	 or	 typical
programmers.	They	are	using	a	programming	language,	either	a	general	one	like	Java	or
C#,	or	a	specific	one	like	PL	SQL	or	Transact	SQL.	However,	they	are	using	a	language.
They	develop	classically,	they	write	code:	they	are	writers!

Apart	 from	 classic	 programming,	where	 the	 developer	writes	 his	 code,	 there	 is	 a
new	generation	of	programmers,	I	would	call	them	visual	developers.	This	new	category
of	programmers	is	becoming	more	and	more	appreciated	on	the	market.	To	remain	in	the
field	of	databases,	 good	examples	 can	be	 taken	 from	data	warehousing.	 I	 am	especially
thinking	at	the	“ETL”	process,	the	process	of	extracting,	transforming	and	loading	the	data
from	a	set	of	operational	system	to	a	large	data	warehouse	system,	a	historical	database.
There	 are	 many	 examples	 of	 “ETL”	 visual	 tools,	 like	 “INFORMATICA”	 or	 “Oracle
Warehouse	Builder”,	or	“Microsoft	Integration	Services”.	An	“ETL”	is	a	very	complicated
process	 where	 data	 needs	 to	 be	 integrated	 from	 various	 operational	 systems	 into	 a
historical	 database,	 with	 the	 purpose	 of	 analysis	 and	 prediction.	 An	 ‘ETL”	 developer
nowadays	is	sometimes	a	visual	developer	and	not	a	classic	developer.	Of	course	the	best
ones	 are	 both	 because,	 even	 for	 a	 visual	 developer,	when	 things	 are	 not	 going	well	 he
needs	 to	debug	and	he	 is	going	to	 the	sources	behind	the	visual	 tool.	Therefore,	 there	 is
this	 alternative	 too,	 especially	when	 speaking	about	 specific	 interfaces	 like	a	 replication
system,	an	“ETL”	or	a	data	migration	system,	whenever	we	are	discussing	the	transfer	of
data	between	systems,	a	visual	tool	might	be	a	solution.	Very	often,	managers	choose	these
types	of	solutions.

We	are	slowly	moving	to	a	mixed	world.	The	future	world	will	also	be	the	world	of
tools:	 this	 seems	 to	 be	 the	 tendency.	Consequently,	 the	 future	world	will	 be	 a	world	 of
visual	 developers,	 too.	To	be	 a	 good	 specialist	 today	does	not	 necessarily	mean	 to	be	 a
good	classic	programmer	of	a	certain	type,	like	a	C#	programmer	for	example.	You	can	be
a	very	good	visual	programmer.	Still	these	days	companies	add	a	lot	of	variety	in	the	fields
of	specializations	and	now	we	can	see,	looking	at	the	list	of	projects	and	opportunities,	the
new	concept	of	visual	specialist,	visual	developer.	Some	companies	are	not	looking	for	a
database	specialist	anymore	but	for	a	tool	one.	We	have	so	many	tools	in	the	area	that	we
can	find	ourselves	a	bit	overwhelmed,	if	I	can	say	that.

For	example,	I	saw	descriptions	for	specific	projects	where	various	companies	were
asking	for	experienced	specialists	with	many	years	of	experience	in	“INFORMATICA”	or
“Oracle	Warehouse	Builder”.	Moving	data	between	various	systems,	either	between	 two
operational	systems	or	like	in	a	data	warehouse,	being	a	database	developer	doesn’t	seem
to	be	the	best	solution	anymore.

I	have	some	experience	 in	visual	development	but	I	do	not	 intend	 to	move	 to	 this
area,	an	attractive	area	for	many	people.	First,	I	like	SQL	too	much.	This	is	subjective.

I	also	consider	 that,	very	often,	choosing	a	 tool	 instead	of	a	custom	solution	with

SQL	is	not	a	good	decision.	I	affirm	that	with	the	SQL	language,	you	can	do	miracles	and
very	often,	the	use	of	tools	could	be	avoided	and	replaced	with	pure	SQL	systems.	I	don’t
believe	you	can	build	a	better	replication	system	or	data	migration	system	with	a	tool	than
with	pure	SQL,	in	most	of	the	cases.	Of	course,	the	visual	developers	will	disagree	and	it
is	 their	 right	 to	 do	 so,	 I	 am	 sure	 they	 have	 solid	 arguments	 too.	 Not	 being	 a	 visual
developer	like	them,	I	respect	their	arguments	and	their	options.	Anyway,	my	experience
with	visual	 tools	 showed	me	 that	 the	 argument	of	 time	 is	 not	 necessary	valid.	 I	 am	not
certain	 if	 the	development	 time	with	a	visual	 tool	 is	 indeed	better	 than	 the	development
time	with	a	classic,	non-visual	approach.	Moreover,	sometimes	when	you	have	problems
in	a	visual	tool	is	almost	impossible	to	move	forward!

It	 is	 clear	 that	 there	 are	 various	 alternatives	 on	 the	 market	 and	 this	 is	 great.
Companies	can	choose.	There	is	more	and	more	demand	for	the	specific	type	of	software
application,	with	 the	clear	goal	of	data	movement	between	existing	systems.	Companies
are	moving	their	data	continuously:	 it	 is	a	huge	demand	for	 this	 task	almost	everywhere
and	companies	 try	 to	 find	better	solutions	 to	 satisfy	 their	goals.	Sometimes	 they	are	not
satisfied	with	true	database	specialists	and	classic	database	development	and	they	prefer	to
move	to	 tools	and	visual	development	 instead.	It	 is	a	free	market	and	there	are	so	many
ways	of	solving	things.	Personally,	I	strongly	believe	that,	very	often,	the	best	solution	is
SQL.	A	good	 solution	 for	 a	 replication	 system	or	data	migration	 system	 is	very	often	 a
pure	SQL	 system.	Nevertheless,	 of	 course,	 tools	 are	 an	 alternative	 and	 nowadays	many
companies	prefer	to	use	them	instead	of	traditional	solution	like	a	SQL	based	solution.

I	am	on	the	SQL	side!	I	consider	that,	very	often,	a	task	can	be	achieved	with	simple
and	 pure	 database	 programming,	 with	 this	 trivial	 and	 simple	 SQL	 and	 using	 ordinary
database	 development	 tools	 like	 Oracle	 SQL	 Developer	 or	 Microsoft	 SQL	 Server
Management	Studio,	even	in	 the	“ETL”	area,	which	is	maybe	the	most	complex	case	of
pure	 database	 system.	 I	 have	 built	 a	 very	 complex	 replication,	 data	 migration	 system
similar	with	an	“ETL”	and	I	did	it	completely	in	pure	SQL,	using	something	like	5%	of
procedural	 code.	 In	 addition,	 it	 works	 great,	 I	 know	 what	 is	 there	 and	 I	 understand
everything,	I	have	the	perspective	of	a	whole	and	of	the	details.	People	after	me	can	look
and	 understand	 all	 the	 migration	 steps.	 This	 task,	 of	 moving	 data	 between	 different
systems,	can	be	done	in	most	of	the	cases	with	pure	SQL.	For	that,	we	need	to	have	the
proper	developers	to	do	that.

Without	considering	myself	an	evaluator	of	the	labor	market,	I	can	say	my	opinion
as	a	contractor	with	experience	and	as	a	database	person	that	I	am:	it	is	a	bit	of	danger.	A
person	working	in	a	certain	tool	for	five	years	may	become	completely	dependent	on	that
tool.	This	is	one	thing.	The	second	thing	is	the	fact	that	most	of	these	tools	are	visual.	For
example,	in	the	ETL	area,	almost	everything	is	done	within	the	complex	visual	diagrams.
Many	 people	 are	 not	 aware	 of	 almost	 anything	 apart	 from	 their	 diagrams.	Maybe	 I	 am
wrong	and	I	underestimate	the	significance	these	people	have	and	maybe	I	am	subjective
in	considering	the	SQL	and	the	database	importance	as	critical	for	any	people	dealing	with
data,	but	 this	 is	my	 feeling:	 that	many	of	 these	 tool	 specialists	 in	 these	products	have	a
limited	understanding.

I	don’t	mention	 the	 fact	 that,	using	 the	database	knowledge	of	 the	 true	 specialists
and	 going	 back	 to	 SQL	 and	 traditional	 methods,	 there	 will	 be	 also	 others	 advantages.

Maybe	this	tendency	is	just	a	fashion	and	it	will	pass.	Maybe	is	not	just	a	tendency!	The
future	will	decide!

Anyway,	using	a	custom	solution	with	authentic	database	programmers	is	possible
and	 if	 the	 complexity	 allows	 us,	 it	 gives	 the	 company	 the	 advantage	 of	 not	 being
dependent	 of	 the	 tool	 and	 of	 the	 tools	 specialists,	 provides	 the	 company	 with	 the
possibility	to	have	a	product	and	to	have	the	understanding	of	its	own	work.	In	most	of	the
cases,	when	we	have	 this	goal	of	moving	data	between	 sources	 to	 targets,	we	can	do	 it
using	traditional	SQL.	It	is	the	simplest	way	and	gives	us	the	complete	understanding	of
what	 we	 are	 doing.	 There	 are	 situations	 where	 the	 difficulty	 of	 the	 replication	 is	 so
complex	that	a	tool	is	better	than	a	custom	solution,	this	is	for	sure.	What	I	am	saying	is
that,	in	many	cases,	the	solutions	with	the	tools	are	more	expensive	and	less	efficient	than
the	traditional	solution	with	the	use	of	SQL	and	the	use	of	database	programmers.

Speaking	 about	 tools,	 the	 fact	 that	 visual	 development	 is	 easier	 than	 classic
development	is	an	illusion.	I	can	say	that	learning	a	visual	tool	may	be	even	harder	than
learning	a	programming	language,	to	a	certain	extent.	The	reason	for	visual	tools	is	speed
and	 efficiency.	 Things	 can	 be	 done	 faster	 and	 efficient	 with	 visual	 tools.	 The	 visual
developer	works	 fast	comparing	with	 the	classic	developer.	At	 the	 first	view,	 this	seems
true.	Allow	me	to	express	my	doubts	and	to	affirm	that,	in	many	cases,	using	a	pure	SQL
solution	for	a	specific	 interface	can	be	faster,	with	a	better	performance,	a	better	control
and	with	more	understanding	of	the	system.

T

Chapter	4

WHAT	TO	CHOOSE:	THE	DATA
SET	OR	THE	DATA	ROW?

CHOOSING	THE	LEVEL	OF	DETAIL:
THE	SET	VERSUS	THE	ROW!

his	book	is	divided	in	two	parts,	the	first	part	describes	the	concepts	and	the	second
part	 tries	 to	 illustrate	 these	 concepts	 with	 practical	 examples.	We	 are	 prepared	 to

start	soon	a	set	of	practices	that	will	 illustrate	all	 the	concepts	described	in	the	first	four
chapters.	With	 these	 practices,	 I	 want	 to	 show	 that,	 very	 often,	 the	 same	 task	within	 a
database	can	be	done	either	using	the	atomic	style	of	programming,	a	common	style	used
by	many	application	developers,	or	using	 the	holistic	 approach	 for	data	 access,	 the	 true
SQL	 style	 of	 programming,	 style	 that	 is	 specific	 to	 authentic	 database	 programmers,	 to
SQL	programmers.	Unbelievably,	you	will	also	see	that	the	second	style	of	programming	I
am	 promoting	 here:	 is	 much	 simpler	 and	 accurate.	 The	 code	 is	 much	 simpler,	 the
performance	 is	 better;	 the	 code	 is	 highly	 portable	 from	one	database	 system	 to	 another.
Actually,	 I	 am	not	 able	 to	 see	 any	advantage	of	 the	atomic	approach	versus	 the	holistic
approach.	To	be	clear,	all	these	considerations	are	available	in	the	specific	context	of	the
database	development.

Besides,	to	be	even	clearer,	I	want	to	explain	one	more	thing.	When	I	am	referring
to	true	database	developers	and	authentic	database	development	approach,	I	do	not	want	to
say	 that	 this	 style	 is	 an	 exclusive	 style	 that	 should	 be	 used	 exclusively	 by	 specialized
database	 developers.	 This	 style	 is	 very	 accurate	 and,	 with	 some	 efforts,	 it	 could	 be
accommodated	 by	 application	 developers	while	working	 in	 the	 database	 relatively	 easy.
They	don’t	need	to	change	their	style	completely;	they	will	obviously	continue	to	write	in
the	same	manner	at	the	application	level.	Only	that,	when	moving	from	the	user	interface
to	the	database,	they	should	adjust	their	style	and	think	holistically	and	SQL,	as	much	as
they	 can.	A	database	developer	 is	 doing	 that	 somehow	natively	because	he	 is	 a	 kind	of
mercenary	of	the	set-based	approach,	he	does	not	follow	the	atomic	approach	unless	 is
required,	 he	 finds	 this	 as	 totally	 inadequate,	 inefficient,	 counterintuitive,	 against	 the
common	sense,	choose	whatever	word	you	prefer	to	specify	an	inappropriate	style.	For	the
database	 developer,	 the	 set-oriented	 approach	 is	 the	 obvious	way	 of	 doing	 things.	 This
approach	is	not	so	clear	for	the	application	developer	and,	despite	the	differences,	he	needs
to	spend	some	time	to	understand	and	accommodate	this	new	approach.	However,	this	is
not	a	very	difficult	task	and,	as	soon	as	will	understand	it,	will	be	infinitely	more	efficient
in	 the	 database.	 All	 these	 considerations	 above	 are	 available	 for	 classic	 applications,
where	both	approaches	are	acceptable	in	the	database.

I	want	to	mention	again	the	specific	data	migration	applications,	where	the	goal	is
to	move	data	between	various	database	systems.	In	these	specific	software	systems,	the
atomic	approach	is	completely	forbidden	and	the	application	developers	should	stay	away
from	 these	 applications	 if	 they	 do	 not	want	 to	 change	 something	 in	 the	way	 they	write
code!

One	of	the	main	tasks	for	anyone	in	a	database	is	the	ability	to	query	and	to	return
the	 required	 information.	 That	 is	 why	 a	 query	 language	 like	 SQL	 was	 invented:	 this
language	 is	 dedicated	 for	 that	 purpose.	 This	 is	 a	 natural	 language	 and	 its	 naturalness
derives	 from	 the	 limited	 purpose	 of	 the	 language.	We	will	 never	 compare	 SQL	with	 a
classic	programming	language!	The	first	reason	for	that	is	the	one	of	different	natures.	The
second	 reason	 is	 the	 one	 of	 degree	 of	 generality.	A	 query	 language	 like	 SQL	 is	 highly
particular	and	applies	to	the	data	organized	in	a	relational	manner.	That	is	why,	basically,
SQL	is	very	easy.	It	 is	easy	to	learn	SQL;	it	 is	not	so	easy	to	understand	it	and	to	use	it
properly.

As	 we	 already	 mentioned,	 SQL	 itself	 is	 never	 on	 its	 own.	 The	 set	 of	 SQL
instructions	 is	 always	embedded	 in	a	programming	 language.	We	are	using	PL	SQL	 for
Oracle	or	Transact	SQL	for	SQL	Server	or	whatever	programming	language	for	whatever
database	management	system.	There	is	a	large	variety	of	relational	database	systems	with
their	associated	languages	and	Oracle	and	SQL	Server	are	just	the	examples	that	I	prefer
to	 use.	 This	 is	 a	 book	 about	 database	 development	 and	 SQL,	 and	 all	 the	 judgements,
reflections	 and	 thoughts	 are	 available	 in	 any	 relational	 database	 system.	 All	 these
programming	languages	contain	two	types	of	instructions:	SQL	statements	and	procedural
statements.	There	is	an	alternative	for	any	programmer.	Our	logic	can	rely	more	on	SQL
statements	or	can	rely	more	on	procedural	statements.	We	can	think	more	procedurally	or
we	can	think	more	SQL.	In	most	of	the	cases,	 the	procedural	way	is	associated	with	the
atomic	approach.	Still,	sometimes,	programmers	can	work	holistically	and	procedurally,	as
we	will	see	in	some	examples	later	during	the	book.

There	 are	 many	 levels	 of	 details	 in	 our	 logic	 when	 we	 are	 writing	 code	 in	 the
database.	There	 is	 always	 the	 lowest	 level	of	detail,	 the	row	 itself.	Still,	 in	most	of	 the
cases,	a	superior	level	of	detail	should	be	present,	the	data	set	to	be	affected.	Very	often,
the	data	is	identified	and	updated	in	data	sets.	In	most	of	the	cases,	we	are	in	the	position
to	 choose:	what	 level	 to	 pick	 up.	The	 traditional	models	 don’t	 know	 about	 the	 data	 set
because	 this	 concept	 is	 particular	 to	 relational	 databases.	 So,	 the	 application	 developer
coming	from	Java	or	C,	familiarized	with	his	traditional	models,	should	become	aware	of
the	data	set,	otherwise	he	will	be	tempted	to	remain	at	the	lowest	level	of	details,	the	data
row.	 The	 application	 developer	 will	 start	 opening	 cursors	 for	 every	 action,	 declaring
variables	 and	 using	 records	 to	 supply	 simple	 insert	 statements.	 By	 contrast,	 a	 database
developer	is	able	to	think	SQL.	A	database	developer	knows	that	he	needs	to	identify	the
data	set	 and	will	 rely	 on	SQL	 statements	 instead	 of	 procedural	 statements	 to	make	 the
identification	because	will	choose	the	level	of	detail	the	data	set	and	not	the	data	row.	The
database	developer	knows	that	 the	SQL	language	is	a	set-oriented	 language	and	knows
that	this	is	what	should	be	used	in	most	of	his	development	activity.

For	any	programmer	working	in	the	database	and	trying	to	manage	the	data	either
by	reading	something	or	by	writing	information,	a	decision	should	always	be	taken.	How
should	I	write	my	logic?	What	is	the	starting	point,	what	is	the	concept	that	stays	behind
the	 scene	 in	 this	 strange	 and	 simple	 world	 of	 rows	 and	 columns!	 The	 application
developer,	used	with	his	objects	and	entities,	needs	now	to	understand	the	simpler	concept
of	rows	and	columns	and	the	concept	of	data	set.	He	generally	understands	the	concepts	of
rows	and	columns	but	he	is	not	always	aware	of	the	data	set.	Very	often,	he	sees	that	the
procedural	facilities	available	in	the	dedicated	programming	languages	for	data	access	are

applicable	to	the	lowest	level	of	detail.	For	example	a	scalar	function,	a	row	trigger,	even
loop	and	while	statements	he	 finds	 these	excellent	 for	data	access	at	 the	 lowest	 level	of
detail,	 that	 is	 the	 row	 itself.	 Consequently,	 the	 application	 developer	 believes	 that	 he
always	needs	to	try	to	move	the	logic	to	the	lowest	level	of	detail,	to	move	to	the	row.	He
believes	 that’s	 normal	 for	 the	 code	 to	 be	 written	 and	 applicable	 to	 the	 lowest	 level	 of
detail.	 This	 is	 a	 bad	 decision	 in	my	 opinion	 and	 one	 reason	 for	 a	 poor	 performance	 in
many	databases.	Writing	database	programming,	writing	data	access	logic	in	this	manner
when	the	principle	is	to	move	the	logic	by	default	to	the	lowest	level	of	detail	and	to	use
the	atomic	style	is	the	worst	programming	someone	can	write	in	the	database!

Do	 you	 know	 what’s	 funny?	 That	 this	 code	 may	 look	 very	 professional	 and
attractive	 for	 classic	 programmers,	 all	 the	 principles	 of	 structured	 programming	 are
satisfied	and	this	code	may	look	like	a	piece	of	art!	This	shows	once	more	the	subjectivity
of	the	concept	of	style	of	programming!

PERFORMANCE	IS	POOR.	PERFORMANCE	COMPLETELY	BLOCKED
IN	ANY	TENTATIVE	OF	IMPROVEMENT.
The	statements	above	might	be	true	but	the	effects	are	dramatic	and	the	consequences	are
terrible	 for	 the	 database.	 First,	 the	 one	 that	 suffers	 the	 most	 is	 the	 performance.	 The
performance	is	a	disaster.	Let’s	imagine	large	data	sets	affected	in	cursors	all	the	time,	one
by	one	per	row.	Even	if	not	large	data	sets,	because	database	programming	is	not	just	data
warehouse	 and	very	 large	data	 sets,	we	 still	might	have	 issues	with	performance.	 If	 the
dimension	of	the	data	is	moderate	and	not	very	large,	what	happens	to	our	databases?

Do	you	know	what	the	tragedy	is?

Some	companies	implement	large	data	warehouse	systems	and	deal	with	large	data
sets.	 These	 companies	 hire	 specialized	 database	 developers	 and	 these	 developers	 know
how	to	write	set	oriented	code.	In	a	data	warehouse,	the	style	is	generally	the	proper	one.
This	is	not	happening	all	the	time,	but	still	very	often.

If	someone	tries	to	use	the	atomic	approach	in	an	“ETL”,	for	example,	the	“ETL”
will	simply	become	almost	unusable	and	the	consequences	will	be	detected	immediately.
Therefore,	 in	 a	 data	 warehouse	 it	 is	 less	 probable	 to	 find	 these	 inappropriate	 styles	 of
development,	 oriented	 atomically	 per	 the	 lowest	 level	 of	 detail,	 the	 row.	 Still,	 is	 still
happening	 very	 often	 in	 the	 transactional,	 operational	 systems,	 in	 normal	 production
systems	where	people	cannot	afford	or	not	consider	necessary	to	hire	specialized	database
developers	and	everyone	 is	using	application	developers	with	some	SQL	knowledge.	Of
course,	 everyone	 knows	 that	 SQL	 is	 very	 simple	 and	 can	 be	 learned	 right	 away,	 by
anyone!

How	will	the	application	programmer	learn	and	use	the	SQL	language?	In	most	of
the	cases,	he	will	learn	by	analogy	with	his	application	development!	So	what	will	be	his
style?	It	is	probable	that	will	use	a	style	similar	with	the	atomic	style	of	development.

You	see	 the	 logic	of	 some	 IT	professionals!	Everyone	can	 learn	SQL,	 it’s	 simple,
you	already	know	Java	or	C#,	comparing	to	these	SQL	is	a	piece	of	cake,	isn’t	it?	In	these
systems,	the	code	can	be	written	and	it	is	written	very	often	at	the	lowest	level	of	detail.
Due	 to	 the	 moderate	 dimensions	 of	 the	 data,	 the	 logic	 will	 not	 always	 be	 detected	 as
inappropriate	and	the	application	will	survive	as	is	written.	The	bad	performance	will	not
be	 so	 visible;	 the	 timings	 will	 be	 bad	 but	 not	 very	 bad.	 There	 are	 so	 many	 databases
written	by	application	developers	 in	the	same	style	like	the	user	 interface,	and	one	main
reason	for	performance	issue	is	the	style	of	development.

Choosing	 the	 lowest	 level	of	detail	 -	 the	data	 row	and	using	 the	 atomic	 style	has
another	disadvantage	apart	from	the	poor	performance.	Any	tentative	for	improvement	is
effectively	blocked,	the	performance	will	remain	very	low	due	to	the	use	of	atomic	style.

What	are	you	doing	when	you	have	a	 low	performance?	You	try	 to	 improve	it,	of
course.	One	of	the	most	challenging	tasks	for	a	developer	is	the	one	of	performance,	when
the	programmer	is	instructed	to	try	to	improve	the	performance	in	one	section	or	another.	I
was	in	the	position	to	do	that	many	times.	Do	you	know	what	I	did,	in	most	of	the	cases?	I
rewrote	 the	 entire	 logic!	 The	 reason	 for	 low	 performance	 is	 the	 use	 of	 the	 atomic
approach	following	to	the	wrong	decision	of	dealing	with	the	lowest	level	of	detail.	If	the

programmer	chooses	to	write	his	code	at	the	row	level	by	default,	this	code	simply	cannot
be	optimized.	All	the	nice	features	for	performance,	available	in	any	database	system,	like
indexes,	materialized	views	and	others;	all	these	features	are	useless	if	the	code	is	written
in	the	atomic	style.

To	 conclude,	 choosing	 to	 develop	 software	 at	 the	 row	 level	 and	using	 the	 atomic
style	 of	 development	 in	 the	 database	 has	 two	major	 consequences.	 The	 performance	 is
very	low	and	almost	any	tentative	of	 improvements	is	useless.	The	code	simply	cannot
be	optimized	because	all	 the	 features	available	 for	 improving	performance	are	 set-
oriented	 and	 not	 row-oriented.	 Any	 database	 system	 has	 so	many	 great	 facilities	 for
improving	performance.	Look	at	Oracle,	see	the	DB2	system,	choose	SQL	Server,	and	try
to	analyze	any	database	system.	You	will	see	so	many	features	for	improving	performance,
you	have	so	many	things	to	read	and	follow	and	you	need,	as	a	developer	or	a	DBA,	to
learn	a	 lot	 to	apply	all	 these.	Unfortunately,	all	 these	nice	features	are	applicable	for	 the
set-oriented	 approach!	 They	 are	 almost	 useless	 if	 applied	 to	 the	 atomic	 style	 of
development.	So,	if	you	want	a	bad	performance	in	your	database	and	if	you	want	to	be
sure	 that	no	one	can	 improve	 this	performance,	stay	with	your	 favorite	atomic	approach
and	work	at	the	row	level	using	cursors	and	all	the	others	facilities!

Choosing	 to	work	SQL	or	non-SQL	 is	 a	decision	based	on	each	one’s	 experience
too.	It	is	unavoidable	and,	with	all	our	efforts	to	be	as	objective	as	we	can,	choosing	one
style	or	another	is	a	matter	of	subjective	and	personal	experience.	Experience	influences
and	 is	 influenced	by	 taste.	Any	programmer	has	 its	 own	 taste	 and	 the	decisions	 that	 he
makes	 are	 influenced	 by	 all	 these	 factors.	We	 are	 humans	 after	 all	 and	 not	 robots!	The
experience	and	taste	can	be	driven	by	the	learning	process.	For	example,	I	am	sure	many
of	us	were	not	completely	aware	of	the	level	of	granularity,	of	the	duality	between	the	data
set	 and	 data	 row	 and	 the	 decision	 that	we	 should	 always	 take	when	writing	 SQL.	This
distinction	is	very	clear	and	simple,	but	very	often	we	are	not	aware	of	clear	and	simple
things.	There	are	certain	kinds	of	applications	where	choosing	the	level	of	detail	-	the	row
in	 our	 development	 is	 a	 catastrophic	 decision.	 Especially	 in	 systems	 where	 we	 are
planning	to	simply	move	data	between	systems,	in	the	so-called	specific	systems.	The	data
movement	process	is	like	a	sea.	The	data	movement	should	be	done	in	waves	of	data,	and
the	waves	are	defined	according	to	the	business	criteria.	These	waves	of	data	are	the	data
sets.	Choosing	 the	data	 set	 instead	of	 the	data	 row	and	 trying	 to	 identify	 it	whenever	 is
possible	 should	 be	 the	 principle	 that	 drives	 any	 developer	 when	 writing	 code	 in	 the
database.

One	of	the	main	tasks	for	an	experienced	database	developer	is	the	ability	to	read,
understand	 and	 eventually	 drive	 the	 execution	 plan	 of	 a	 SQL	 statement.	 The	 execution
plan	 shows	what	 the	 optimizer	will	 probably	 choose	when	 executing	 a	 SQL	 statement.
Tuning	 SQL	 statements	 for	 a	 better	 performance	 is	 another	 critical	 task.	Generally,	 the
database	 administrators	 are	 responsible	 because	 the	 production	 environment	 is	 the	 real
world	 and	 they	 are	 the	 gatekeepers.	 However,	 in	 reality,	 the	 SQL	 tuning	 process	 starts
much	earlier	in	the	development	environment	and	should	be	managed	by	the	development.
First,	 a	 good	 database	 developer	 knows	 how	 to	 write	 a	 clean	 and	 accurate	 SQL.
Depending	on	the	quantity	of	data	to	be	processed,	the	variety	of	features	available	in	any
database	engine	will	be	added	to	the	SQL	statement	by	the	database	administrator.	If	the
logic	is	written	by	an	application	developer	determined	to	follow	his	favorite	and	familiar

atomic	approach,	there	is	almost	nothing	to	tune	and	almost	nothing	to	improve.

The	 section	 of	 SQL	 tuning,	 a	 very	 important	 section	 for	 database	 development,
implies	 two	 steps.	 The	 first	 step	 is	 to	 try	 to	 catch	 the	 SQL	 statements	 with	 a	 bad
performance,	 the	 SQL	 statements	 that	 seems	 to	 cause	 performance	 issues.	 For	 that,	 we
have	a	variety	of	means	and	tuning	tools	 like	Oracle	Enterprise	Manager	or	SQL	Server
Profiler	 that	will	allow	us	 to	see	and	analyze	 the	statements.	Afterwards,	we	analyze	all
the	 facilities	 for	performance	and	 try	 to	add	 them	so	 the	performance	will	be	 improved.
There	are	so	many	manuals	and	courses	about	that	and	this	is	another	topic,	which	I	don’t
plan	to	discuss	in	this	book.	However,	what	I	want	to	state	again	is	the	fact	that	all	these
are	 useless	 if	 the	 development	 style	 is	 atomic.	 A	 precondition	 for	 all	 these	 tuning	 and
performance	 to	be	applied	 is	a	holistic	 style	of	development	because	 the	 tuning	and	 the
performance	section	rely	in	a	holistic	approach	and	in	the	set-based	style	of	development.

DATABASE	PROGRAMMING	MEANS	QUERY,
QUERY	AND	QUERY	ALL	THE	TIME!
Things	 are	 very	 clear	 and	 straightforward	 in	 database	 programming,	 only	 that	 everyone
needs	 to	 understand	 this.	 I	 want	 to	mention	 and	 reconfirm	 again	 the	main	 task	 of	 any
database	developer:	the	task	of	query.	The	database	programmer	has	almost	the	same	tasks
all	 the	 time.	When	doing	his	 logic	 he	 is	 continuously	manipulating	 business	 data,	 he	 is
doing	“DML”	statements.

The	programmer	is	mainly	doing	four	things.

1.	 The	programmer	is	reading	business	information.	This	is	the	query,	the
“select”	statement.	He	is	simply	getting	the	data	according	to	his	needs.
Learning	how	to	select	is	very	simple	but	is	also	very	difficult.	This	is	the
paradox	in	database	programming.	A	query	is	like	a	business	request	and	the
set	of	data	returned	by	the	query	is	the	response	to	the	business	request…	A
business	request	may	be	very	simple	or	very	complicated.	What	may	be	simple
or	complicated	to	the	request	is	not	the	request	itself,	even	if	this	one	may	be	in
one	way	or	another,	but	the	means	and	facilities	that	the	programmer	should
use	to	write	the	select	statement.	One	of	the	first	things	the	programmer	should
do	is	to	identify	the	data	set	behind	the	request.	The	business	request	is	always
reflected	in	a	data	set	behind!	Being	aware	of	this	principle	and	thinking
holistically	is	highly	recommended.

2.	 The	programmer	may	add	new	data,	this	means	the	“insert”	statement.	The
insert	can	be	simply	done	in	classic	insert-values	syntax,	where	the	values	for
the	columns	are	manually	supplied.	The	programmer	may	add	data	in	a	certain
target	from	a	source	of	data	and	he	may	use	the	most	complex	syntax	insert-
select.	This	type	of	insert	it	may	be	difficult	and	the	difficult	thing	is	the	select
statement	and	the	set-based	orientation.	Whenever	proposing	to	insert	into	a
target	from	a	source,	we	need	to	identify	the	source.	The	source	of	data	may	be
taken	from	a	table	or	from	a	variety	of	tables,	linked	by	joins,	eventually
grouped	by	union.	Therefore,	the	difficult	part	in	the	second	type	of	statement
that	a	programmer	is	doing,	in	the	insert	statement,	is	actually	the	same	select
statement.	Again,	the	programmer	should	try	to	think	holistically	and	try	to
identify	the	source	of	data	as	a	whole.	It	is	not	always	possible	and,	if	not
possible,	he	would	move	to	a	lower	level	of	detail,	lower	to	the	data	set,	for
most	of	the	cases	to	the	row.

3.	 The	programmer	may	edit	data,	this	means	changing	something.	This	is	the
“update”	statement.	An	update	can	be	divided	in	two	segments.	The	first	part
is	the	identification	of	the	rows	to	be	updated.	What	do	we	want	to	update?
The	second	part	corresponds	to	the	set	of	new	values,	what	are	the	new	values?
When	the	programmer	wants	to	see	the	rows	to	be	updated,	he	wants	to	get	a
data	set.	Consequently,	he	needs	to	do	a	select	statement	first,	the	same	old
select	statement.	Secondly,	he	needs	to	find	a	set	of	data,	again	the	same
holistic	vision.	When	he	wants	to	find	the	new	values,	he	can	manually	supply
some	values	or	he	can	get	the	values	from	some	sources	of	data.	Getting	the
values	from	some	sources	of	data	can	be	very	difficult,	for	that,	again	we	need

to	build	some	select	statements	and	use	them	to	identify	the	sources	of	data	for
the	new	values.

4.	 The	programmer	can	delete	some	data.	In	order	to	do	that,	he	needs	to	identify
the	rows	to	be	deleted.	The	programmer	needs	to	write	a	select	statement	first	-
even	if	he	does	that	in	his	mind	-	the	select	statement	with	the	rows	to	be
deleted.	That	will	be,	of	course	another	data	set.

Let’s	 look	 at	 the	 descriptions	 above	 and	 try	 to	 see	 some	 constants	 that	 occur
everywhere,	 in	 all	 the	 four	 major	 actions.	 We	 notice	 that	 select	 statements	 should	 be
executed	all	the	time,	before	anything	else.	Even	if	a	write	action	is	required,	a	read	action
is	usually	correlated	with	it.	A	select	statement	is	involved	in	almost	anything.	Secondly,
we	see	that	a	data	set	is	always	present	in	any	action,	we	are	reading	and	we	are	writing
data	sets	in	any	of	the	major	actions	involved	in	database	development.	Dividing	the	data
set	in	data	rows	by	default	because	the	followers	of	structured	programming	are	not	aware
of	the	data	set	is	against	the	definitions	of	these	major	actions.

Why	 are	we	 doing	 this	 review	 of	 these	major	 actions?	 The	 practical	 section	will
start	soon!	A	variety	of	exercises	will	demonstrate	these	simple	concepts	and	principles	of
work	previously	described.

With	 this	 occasion,	 I	 wanted	 to	 reaffirm	 again	 the	 importance	 of	 the	 query	 in
database	programming.	To	be	a	database	programmer	you	need	 to	understand	 the	query
process,	this	is	the	most	important	chapter	for	a	database	programmer.

Secondly,	 looking	 at	 these	 major	 actions	 and	 reviewing	 them,	 we	 can	 also
understand	 the	 importance	 of	 the	 set-based	 approach.	Even	 in	 the	 definition	of	 the	 four
major	SQL	statements	the	data	set	is	present	everywhere.	The	data	set	division,	apart	from
the	 technical	 limitations	 and	 reasons	 where	 the	 division	 is	 required,	 is	 against	 the
definitions	of	the	major	actions	in	database	programming.	What	is	an	update?	An	update
means	to	change	the	values	for	a	data	set.	What	is	a	delete?	A	delete	means	to	delete	a	data
set.	What	is	an	insert	into	a	target	from	a	source	of	data?	This	represents	an	insertion	of	a
data	set	from	a	source	to	the	target.	Everywhere	we	see	the	presence	of	the	data	set!

When	doing	database	development,	the	first	task	is	to	get	the	data,	so	to	use	SQL.
The	only	tool	that	allows	us	access	to	data	is	SQL.

Secondly,	we	are	writing	procedural	 code,	we	are	doing	classic	development	 as	 a
last	 resource,	 or	 as	 an	 additional	 resource.	A	 database	 programmer	 needs	 to	 be	 able	 to
think	SQL,	to	think	in	data	sets.	Like	any	programming	languages,	we	have	all	the	general
facilities	 like	variables,	structures,	and	others	and	we	have	specific	features	 like	cursors.
These	are	part	of	any	database	developer	life.	However,	what	is	important	is	to	realize	that
these	facilities	are	not	to	be	used	before	SQL.

The	 logic	 is	written	 in	 stored	procedures,	 functions,	 and	 triggers.	However,	when
looking	inside	them,	we	should	see	mostly	SQL.	If	we	see	a	cursor,	this	means	there	was
no	other	way	for	the	problem	to	be	solved	in	SQL	and	a	cursor	was	used.

For	example,	we	need	to	concatenate	some	values	in	a	column,	values	taken	from
another	column.	We	may	need	to	position	ourselves	in	the	data	set,	take	the	value	from	the
column	 in	 a	 row-by-row	 approach,	move	 the	 data	 in	 a	 variable,	 concatenate	 in	 another
variable,	get	the	result	and	update	the	other	column.	This	is	a	context	where	the	procedural

facilities	of	the	language	are	required	and	used	accordingly.	Pure	SQL	language	was	not
enough!	 Therefore,	 this	 may	 happen,	 and	 we	 always	 have	 the	 cursors	 and	 the	 rest	 of
procedural	facilities	that	allow	us	to	handle	things	in	a	row-by-row	approach.

Let’s	say	that	we	are	involved	in	a	task	like,	for	example,	moving	some	data	from
one	table	to	another,	from	a	source	to	a	target.	The	developer	can	think	in	many	ways.	He
can	try	to	declare	some	variables	or	structures:	he	can	try	to	move	the	data	elements	into
some	temporary	storage	spaces	like	the	variables,	he	can	open	a	cursor,	he	can	move	the
values	 in	 the	 cursor	 and,	 being	 in	 the	 cursor,	 he	 can	 try	 to	 copy	 the	 elements	 from	 the
source	into	the	target.	This	is	the	atomic	vision	of	the	programmer.	This	is,	in	my	opinion,
the	vision	 that	 is	 compatible	more	with	 typical	 programming,	 the	 style	of	programming
that	 is	described	in	most	of	 the	courses	and	used	by	most	of	 the	developers.	The	atomic
vision	 works,	 and	 the	 goals	 can	 be	 achieved.	 More	 than	 that,	 the	 atomic	 approach	 is
followed	by	many	application	developers	within	the	database.	Thousands	and	millions	of
logics	 within	 the	 databases	 are	 written	 in	 this	 manner.	 It	 is	 easier	 for	 an	 application
developer	 to	use	 the	same	approach.	Cursors	are	 the	best	 facility	 for	 that	purpose.	 I	use
them	time	to	time	because	it	happens	to	be	not	able	to	solve	the	problems	with	pure	SQL.

The	problem	is	that	this	vision,	the	atomic	vision	is	not	exactly	the	best	vision	that
matches	with	the	database.	The	atomic	vision	is	not	optimal	and	is	not	suitable	for	data.
The	 cursors	 match	 perfectly	 the	 atomic	 vision	 and	 this	 is	 the	 best	 way	 to	 write	 code
atomically.

I	 also	 declare	 cursors	 and	 variables	 or	 records,	 move	 the	 data	 in	 a	 row-by-row
approach	 into	 variables,	 manipulate	 them	 and	 finalize	 the	 logic	 sometimes.	 Still,	 this
should	be	done	only	when	the	data	manipulation	is	not	possible	with	pure	SQL.	This	is	a
rare	 situation.	 The	 atomic	 approach	 will	 be	 used	 when	 manipulation	 row-by-row	 is
required	and	the	strength	of	SQL	is	not	enough	to	supply	this	goal.	At	that	time,	the	cursor
and	the	row-by-row	approach	is	the	best	choice	and	it	can	be	used.	That	is	an	exceptional
situation!

LET’S	GO	BACK	TO	THE	SQL	SHOP!
ONE	MORE	TIME,	PLEASE!
I’m	going	to	use	again	some	analogies	to	illustrate	the	differences.

Let’s	 go	 back	 to	 our	 shop,	 the	 database	 shop.	 I	 am	with	my	wife	 and	we	 have	 a
basket	full	with	products,	of	course,	she	is	the	boss	in	all	these	domestic	matters!	We	go	to
the	cashier	and	we	are	ready	for	pay.	We	have	ten	chocolates	in	the	basket,	with	different
colors.	Instead	of	summarize	them	all	together	we	start	adding	the	chocolates	one	by	one,
pay	 for	 each	 chocolate,	 and	 then	 continue	with	 the	 next	 one.	 Obviously,	 a	 huge	 queue
forms	behind	us.	People	in	 the	supermarket	get	upset.	The	question	is	why	are	upset?	If
we	have	just	two	chocolates,	there	is	near	closing	time	for	lunch	in	Spain,	and	most	of	the
people	are	taking	their	siesta,	so	actually	there	are	not	too	much	people	in	the	supermarket,
it	shouldn’t	be	such	an	issue.

The	fact	that	I	rather	pay	for	the	two	chocolates	in	two	times	instead	of	paying	them
in	one	shot	it	does	not	harm	anyone.	Still,	if	I	have	ten	chocolates	and	it’s	the	rush	hour	in
the	 afternoon,	 and	 the	 supermarket	 is	 full	 of	 people	 coming	back	 from	 the	 office,	 then,
paying	for	ten	chocolates,	even	two,	in	many	shots	instead	of	one	single	shot	may	cause
serious	inconveniences.

Wait!	The	cashier	asked	me	for	a	bag.	I	looked	at	her	very	surprised!	What	do	you
want	me	to	do	with	a	bag?	-	I	asked	her.	I	need	ten	bags	for	my	ten	chocolates.	I	believe	I
will	give	up,	the	bags	are	useless	for	me	I	can	take	everything	in	my	hand	and	go	to	my
car:	my	wife	will	help	me	so	I	can	deliver	the	chocolates	relatively	easy.

The	cashier	stared	at	me.	She	almost	refused	to	believe!	Are	you	joking?	–	She	said!
What	world	are	you	coming	from,	are	you	from	Mars	or	Pluto	or	something?	Don’t	you
know	what	 these	bags	are	 for?	They	allow	you	 to	add	many	goods	 in	one	and	 transport
them	easily.	If	you	consider	adding	the	goods	one	by	one,	you	don’t	just	act	illogically	and
against	the	common	sense,	you	don’t	just	waste	your	time	and	others,	but	you	also	refuse
any	tool	like	a	bag,	dedicated	to	this	purpose.

So	what’s	the	main	reason	for	these	inconveniences	apart	from	the	fact	that	it	seems
quite	 a	 lack	 of	 logic	 to	 pay	 for	 ten	 chocolates	 ten	 times	 instead	 of	 paying	 them	 in	 one
shot?	 The	 reason	 is	 clear:	 performance.	 The	 performance	 is	 very	 poor	 and	 the	 main
consequence	is	the	bad	timing	for	the	queues.	More	than	that,	any	feature	for	performance
improvement	is	useless.

Similarly	for	the	database,	by	using	the	atomic	vision	and	being	used	to	affect	the
data	atomically,	may	not	cause	too	much	harm	in	the	testing	activity	where	the	quantity	of
data	is	generally	low	and	the	variety	of	data	is	generally	reduced.

Nevertheless,	 in	 production,	 there	 it	 makes	 a	 big	 difference	 and	 very	 often,	 this
inappropriate	style	may	cause	issues.

I	can	tell	you	that,	at	least	in	my	activity,	whenever	I	was	involved	in	performance,
almost	 all	 the	 time	 I	was	 forced	 to	 rewrite	 large	 pieces	 of	 code	 and	 replace	 the	 atomic
vision	with	the	holistic	vision	described	everywhere	in	this	paper.

The	alternative	to	the	atomic	vision	that	is	so	familiar	to	the	application	developers

is	the	holistic	vision	that	is	intimately	related	to	SQL,	to	the	data	in	the	relational	model
and	to	the	concept	of	data	set.

Let’s	go	back	to	the	example	in	the	beginning	of	the	paragraph.	We	have	some	data
to	move	from	one	source	of	data	to	a	destination.	If	we	think	holistically,	which	means	we
think	SQL,	we	analyze	the	entire	set	of	data	in	the	source.	We	identify	the	data	set	to	be
transported	into	the	target.	For	that,	we	need	a	query:	that	is	all	we	need!	This	is	actually
the	most	difficult	part.	We	simply	take	the	entire	set	of	data	and	move	it	in	one	shot	in	the
target.	There	is	no	need	for	more:	we	do	not	need	any	programming	facilities	like	cursors
and	 structures.	 Sometimes	 the	 complexity	 of	 this	 task	 may	 require	 these	 facilities,
especially	 when	 the	 set	 of	 data	 from	 the	 source	 needs	 to	 be	 manipulated	 row-by-row
before	being	added	 into	 the	 target.	There	 are	 an	enormous	number	of	 scenarios;	 I	don’t
want	to	generalize	in	any	way.	Very	often,	more	often	than	anyone	can	imagine,	the	degree
of	simplicity	for	this	basic	operation,	moving	data	from	one	place	to	another,	has	such	a
level	that	a	simple	SQL	should	be	enough	to	fulfill	the	task.	In	addition,	very	often,	due	to
the	atomic	style	that	is	so	appropriate	to	a	large	number	of	programmers,	this	task	is	done
in	a	very	complicated	way.	This	causes	many	issues,	especially	in	performance.

We	all	know	how	important	performance	is	for	everyone.	My	opinion	is	that,	very
often,	 the	main	 reason	 for	 a	 poor	 performance	 in	 the	 database	 is	 not	 a	 wrong	 indexes
strategy,	or	something	of	that	kind,	but	the	use	of	this	atomic	approach	in	the	code,	a	style
that	is	highly	unsuitable	for	the	database.

THE	USE	OF	SCALAR	FUNCTIONS	–A	TYPICAL
ACCESSORY	FOR	THE	ATOMIC	APPROACH!
One	 valuable	 principle	 when	 studying	 some	 languages	 like	 C	 or	 Pascal	 is	 the	 use	 of
functions.	 Any	 student	 starts	 by	 learning	 the	 basics	 like	 variables,	 all	 kind	 of	 loops,
conditional	 statements.	The	 student	 learns	arrays,	 then	 structures.	 In	a	 future	 step	of	his
learning	process,	the	student	learns	the	use	of	functions.

Before	that,	he	did	everything	in	the	main	function	and	then	he	suddenly	realizes	the
power	of	 functions	and	one	principle	of	 structured	programming:	he	 learns	how	 to	 split
every	distinct	task	according	to	the	business,	and	how	to	embed	it	in	a	function.

The	function	can	return	a	true	value,	like	an	integer	or	a	string,	or	can	do	something
without	 returning	 anything,	 like	 a	 void	 function.	 The	 programmer	 is	 seduced	 by	 this
principle	 and	he	keeps	 it	 in	his	mind	all	 his	 life.	He	 is	 extremely	happy	 that	 the	use	of
functions	 allows	 him	 to	 organize	 his	 work	 better	 and	 to	 divide	 the	 complexity	 of	 his
activity	into	less	complex	tasks.

The	programmer	builds	functions	over	functions	and	he	remains	consequent	to	this
principle	of	divisions:	 to	divide	 the	complexity	and	 separate	 the	 task	 into	distinct	 tasks,
embedded	in	functions.

Afterwards,	if	he	were	to	use	some	programming	languages,	he	would	learn	the	use
of	the	procedure	and	sees	if	he	were	going	to	like	a	void	function	or	not.

After	 some	 time,	 the	programmer	 starts	working	 in	 the	database	 too.	No	one	 told
him	that	this	is	something	else	and	he	should	not	necessarily	follow	exactly	the	same	paths
and	principles.	He	sees	that	there	are	two	main	types	of	procedural	facilities:	procedures
and	functions.	He	acknowledges	that	a	stored	procedure	aims	to	perform	an	action	while	a
function	 retains	 original	meaning,	 to	 return	 a	 value.	 He	 understand	 the	 use	 of	 a	 stored
procedure	 and	 he	 sees	 that	 in	 most	 of	 the	 cases	 he	 is	 doing	 some	 particular	 actions,
especially	read	or	write	data	using	the	set	of	“DML”	statements.	The	principle	of	division,
divides	 the	 logic	 in	 smaller	 pieces	 according	 to	 the	 business,	 is	 equally	 valuable	 and
applicable	in	the	database	like	in	the	user	interface.

However,	 the	 use	 of	 functions	 should	 be	 seen	 differently.	 The	 application
programmer	is	used	with	functions	and	he	can	easily	see	the	combination	between	a	cursor
and	 a	 function.	 He	 sees	 the	 scalar	 function	 right	 away	 as	 an	 ideal	 type	 of	 procedural
facility	 for	 his	 atomic	 approach.	A	 scalar	 function	 is	 that	 type	 of	 function	 that	 acts	 per
variable,	per	column	and	row.	It	is	the	last	type	of	function	the	programmer	should	use	if
he	wants	to	follow	the	set-based	approach!	The	application	developer	is	used	with	the	use
of	functions	from	the	user	interface	and	he	is	tempted	to	translate	that	in	the	database.	This
is	another	bad	decision,	in	my	opinion,	as	I	will	argue	right	now.

The	scalar	function	returns	a	certain	value	of	a	certain	type.	Any	scalar	function	can
be	applied	 to	a	certain	column	or	expression	 in	a	certain	 row.	The	scalar	 function	 is	 the
best	 facility	 for	 the	 atomic	 approach	 and	 it	 is	 one	 favorite	 facility	 for	many	 application
developers	working	inside	the	databases.	Let’s	imagine	you	have	one	thousand	rows	in	a
data	set	and	you	create	one	function	and	apply	it	in	a	cursor	in	the	data	set	one	thousand
times,	instead	of	avoiding	that	function	and	do	the	entire	logic	in	the	data	set	directly!	This

is	a	very	common	situation	in	many	databases!

On	the	other	hand,	in	the	database	we	have	many	types	of	functions.	We	have	table
functions	 that	 apply	 to	 data	 sets,	 these	 types	 of	 functions	 are	 much	 better	 than	 scalar
functions	and	a	good	database	developer	should	use	these	ones	and	apply	directly	per	sets
of	data.	That	is	the	difference.	A	table	function	can	be	called	per	a	data	set	while	a	scalar
function	would	always	be	called	per	column	and	row	in	a	cursor.

A	scalar	function	is	to	be	defined	and	used	if	we	apply	it	to	configuration	tables.	We
know	that	one	certain	function	will	return	one	single	value	from	a	configuration	table:	this
is	the	ideal	scenario	for	a	scalar	function.

In	the	database,	the	main	procedural	object	is	the	stored	procedure.	This	is	obvious
because	in	the	database	the	main	task	is	the	data	manipulation,	either	read	or	write.	This	is
what	we	are	doing	in	most	of	our	stored	procedures,	read	data	and	write	data.	Using	the
holistic	approach	and	the	set-based	approach,	we	read	and	write	data	sets.

If	we	need	to	generate	data	sets	and	use	the	generated	output	as	input	for	something
else,	we	can	define	a	table	function.	The	role	of	the	function	is	very	different	in	database
programing.	 This	 is	 another	 principle	 that	 the	 application	 developer	 should	 understand
before	starting	creating	hundreds	of	scalar	functions	and	call	them	in	cursors!

DEBUGGING	IS	SO	SIMPLE!	THE	CODE	IS
MUCH	SIMPLER	AND	READABLE!
Another	advantage	of	the	holistic	approach	is	the	easy	use	of	debug.

I	 am	 referring	 now	 to	 those	 specific	 systems,	 where	 the	 goal	 is	 to	 move	 data
between	various	systems.	That	might	be	a	data	migration	system,	or	a	replication	system,
or	 an	 “ETL”	 system	 etc.	 If	 this	 system	 is	 built	 entirely	 in	 SQL,	 as	 I	 recommend,	 apart
from	all	the	advantages	described	in	the	previous	pages,	I	want	to	mention	another	one.	I
am	 referring	 to	 the	 methods	 for	 debug.	 In	 these	 specific	 systems,	 we	 do	 not	 have	 the
classic	 debug	 functionalities	 with	 variables	 and	 watch.	 Still,	 we	 have	 a	 much	 simpler
debug	method	to	use,	for	people	that	are	using	the	holistic	approach.	Whenever	you	have
an	error	of	a	certain	type,	as	a	constraint	violation,	conversion	error	or	anything	else,	and
you	have	an	error	handling	procedure	that	shows	you	the	place	where	the	error	occurs,	it	is
very	 simple.	All	 you	 need	 to	 do	 is	 to	 simulate	 everything	 until	 that	 point;	 you	 need	 to
make	sure	you	have	the	data	when	the	error	occurs,	and	finally	take	the	entire	set	of	data
separately,	check	the	data	and	see	what	causes	the	error.

For	 example,	we	 are	 adding	 some	 new	 products	 in	 a	migration	 system	 from	 one
“ERP”	system	to	one	target	system,	an	inventory	system.	For	some	reason,	some	materials
attributes	 are	 not	 added	 and	 a	 constraint	 violation	occurs	 in	 the	 step	with	 the	 following
attributes.	We	can	simply	reload	the	process	until	that	point,	make	sure	we	are	able	to	have
the	same	data	until	 that	point,	and	 then	retake	 the	step	with	 the	error,	execute	 the	 insert
statements	and	the	logic	for	that	step	and,	when	we	are	at	the	area	with	the	error,	start	and
investigate	holistically	what	is	happening.

This	kind	of	debug	is	very	simple	for	anyone	familiarized	with	the	holistic	vision,
the	SQL	vision	of	set	of	data.	I	will	try	to	illustrate	some	examples	of	debug	in	one	of	my
future	books	where	I	am	planning	to	describe	a	replication	system	written	in	pure	SQL.

In	most	of	the	cases,	the	reason	for	the	error	should	be	a	data	set.	All	you	need	is	to
take	 that	 data	 set,	 analyze	 it,	 and	 try	 to	 understand	 which	 details	 of	 the	 data	 set	 were
causing	the	error.

If	 the	 migration	 system	 is	 properly	 organized	 in	 steps,	 if	 the	 error	 handling
procedure	is	built	coherently	then	is	able	to	catch	the	error	and	store	it	in	in	the	error	table.
There	we	can	see	the	step,	and	the	error	identifier	and	description.	We	can	have	constraint
violations	errors	or	conversion	errors	or	whatever	types	of	errors.	We	simply	comment	the
steps	after	the	step	with	the	error	and	run	the	interface	until	 that	point.	We	then	take	the
step	with	the	error	and	check	the	data.	We	query	the	data	before	the	error,	analyze	it	and
see	what	caused	it.	Again,	for	debugging,	SQL	is	the	required	skill.	In	order	to	be	able	to
identify	the	reasons	for	the	error	we	need	to	query	the	data,	and	see	what	was	happening.
It	is	elementary,	very	straightforward!

Another	advantage	of	the	holistic	approach	is	readability.	The	code	is	much	clearer,
and	you	can	see	everything	organized	 in	data	 sets.	 I	admit	 that	 this	apparent	clarity	and
readability	is	somehow	subjective	and	relative	to	the	developer.	I	admit	that	the	developer,
being	 used	 to	 classic	 programming,	 may	 find	 the	 SQL	 style	 not	 so	 readable.	 He	 may
believe	 that	 his	 style,	 with	 lots	 of	 cursors	 and	 structures	 and	 loops,	 is	 more	 readable.
Honestly,	 I	 don’t	 want	 to	 force	 anyone	 to	 accept	 my	 idea,	 maybe	 this	 matter	 is	 more

subjective	than	I	believe	it	is.	My	strong	opinion	is	that	the	code	is	simpler	and	readable	if
written	 in	 the	 SQL	 style	 instead	 of	 being	 written	 in	 the	 procedural	 style.	 At	 least,	 the
length	of	the	procedures	is	for	sure	smaller	if	you	use	the	SQL	style.	That	does	not	mean
you	 cannot	 have	SQL	 statements	 to	 share	many	 pages,	 if	 the	 complexity	 is	 beyond	 the
average!

WHAT	IS	A	DATABASE	DEVELOPER	NOWADAYS?
I	want	to	add	some	words	about	database	development,	the	world	where	I	claim	I	belong
too	along	with	so	many	others	professionals!

Let’s	 look	 at	 the	market.	 The	 database	 development	 is	 an	 accepted	 specialization
nowadays,	after	many	years	when	only	database	administrators	were	accepted	as	distinct
database	specialists.

Now	there	 is	an	explosion	of	database	specialists	and	a	continuous	and	 increasing
demand.	This	change	is	because	more	and	more	reporting	and	analytics	databases	are	built
over	the	set	of	operational	systems	everywhere.

The	sections	of	data	warehouse,	not	mentioning	the	big	data	technologies,	are	more
and	present	everywhere.	The	BI	technologies	are	more	increasingly	popular	in	the	market.
Moreover,	who	are	 the	 specialists	 to	handle	 all	 these	projects?	The	database	developers
along	 with	 business	 analysts,	 reporting	 analysts	 are	 the	 ones	 that	 can	 sustain	 all	 these
increasing	demands.

From	my	perspective,	as	a	SQL	developer	and	specialist,	despite	 the	appearances,
things	are	not	completely	different!	The	SQL	is	still	considered	in	the	“other”	section	for
many	 projects	 and	many	 teams,	where	 application	 developers	 should	 know	 some	 SQL,
among	others.	The	application	developers	 still	 consider	SQL	similar	 to	 their	 application
development	and	use	 their	own	style	 in	 the	database	and,	even	more,	 there	are	database
developers	specialized	in	one	language	or	another	that	write	code	in	a	similar	way	with	the
application	 using	 the	 atomic	 style	 of	 development.	 Let’s	 analyze	 a	 specialized	 PL	SQL
developer	that	is	using	the	atomic	approach	and	the	procedural	facilities.	He	calls	himself
a	database	developer.	I	call	him	an	application	developer,	because	he	does	not	think	SQL
and	holistically,	even	if	he	is	developing	in	PL	SQL.

In	the	field	of	data	warehousing,	where	there	are	so	many	“ETL”	coming	up,	in	the
middle	 or	 large	 companies	 with	 a	 variety	 of	 systems	 communicating	 between	 them	 by
specific	 replication	 systems	 or	 data	 migration	 systems,	 more	 and	 more	 database
developers	 are	 requested	 to	 do	 the	 job.	 The	 set-oriented	 approach	 is	 requested	 on	 the
market	 and	 this	 shows	 that	 the	 enterprises	 are	 aware	 of	 the	 necessity	 of	 the	 holistic
approach.	 The	 project	 managers	 should	 either	 decide	 to	 use	 specialized	 database
developers	or	try	to	teach	application	developers	to	write	holistically.

IT’S	PRACTICE	TIME!
Now,	 finally,	 after	 so	many	discussions,	 concepts,	 and	clarifications,	 it	 is	 time	 for	 some
exercises.	 I	 will	 try	 in	 the	 next	 following	 chapters	 to	 illustrate	 the	 two	 styles	 of
development	 with	 examples.	 I	 will	 try	 to	 show	 that	 the	 holistic	 approach	 is	 a	 better
approach	when	being	in	the	database.

As	 I	 mentioned,	 the	 examples	 are	 taken	 from	 two	 major	 database	 management
systems,	 Oracle	 and	 SQL	 Server.	 I	 want	 to	 reaffirm	 that	 all	 the	 considerations	 and
thoughts	 described	 in	 this	 book	 are	 general	 and	 am	 referring	 to	 any	 relational	 database
system.	The	holistic	approach	is	a	vision	that	should	be	present	in	any	relational	database.
Oracle	database	and	Microsoft	SQL	Server	database	are	taken	as	examples	to	illustrate	the
principles	described	here.	Similar	examples	can	be	easily	reproduced	in	any	other	database
system.

You	may	see	one	advantage	of	the	holistic	approach	when	trying	to	translate	some
of	the	examples	in	your	database,	if	other	than	Oracle	and	SQL	Server.

It	 will	 be	 very	 easy	 for	 you	 to	 translate	 the	 holistic	 version,	 because	 SQL	 is	 a
standard	and	the	syntax	will	be	very	similar.	In	the	atomic	approach,	you	will	have	some
work	 to	 do	 to	 translate	 the	 examples	 from	Oracle	 or	 SQL	 Server	 to	 your	 system.	 The
procedural	 languages	 are	 similar	 but	 there	 are	 differences,	 there	 is	 no	 standard	between
them	 apart	 from	 the	 same	 mode	 of	 structure	 programing.	 Still,	 we	 don’t	 need	 to
exaggerate,	a	cursor	is	a	cursor,	a	loop	is	a	loop,	and	things	are	similar	here	too.	However,
the	quantity	of	work	necessary	to	keep	versions	written	in	procedural	code	for	any	of	the
database	management	systems	is	infinitely	higher	than	if	the	logic	were	written	in	SQL.

T

Chapter	5

DATA	TRANSFER	PARADIGM,
THE	FIRST	SET	OF	EXAMPLES

THE	EXERCISES,	THE	CONTEXT,	THE	GOALS,
WAYS	TO	ILLUSTRATE	THE	TWO	APPROACHES!

he	title	of	this	book	is	“Two	styles	of	database	development”	and	it	is	divided	in	two
parts:	the	concepts	and	the	practice.

Starting	with	this	chapter,	I’m	going	to	detail	the	two	styles	by	using	a	large	variety
of	 examples.	Some	people	may	 still	 argue	 against	 the	 efficiency	 and	 advantages	 of	 one
style	or	another	but	no	one	can	deny	the	distinctions	anymore.	My	main	goal	in	this	book
is	 to	 clarify	 the	 two	 styles	 of	 development,	 to	 show	 the	 differences	 between	 them,	 the
advantages	and	disadvantages	of	each	of	them.	I	also	intend	to	promote	the	holistic	style
but	this	is	somehow	subjective	to	a	certain	degree.	Anyone	may	experiment	and	may	try	to
apply	the	two	styles	and	anyone	can	compare	if	he	wishes	to.	If	people	are	aware	of	the
distinctions	then	my	main	goal	is	achieved	and	I	am	satisfied.

The	considerations	and	the	arguments	for	a	certain	style	of	programming,	specific	to
the	database,	against	a	classic	style	specific	to	the	user	interface	are	going	to	be	illustrated
in	 the	following	chapters	by	a	 list	of	practices	and	exercises.	Many	examples	will	 try	 to
explain	 the	 two	approaches,	 the	holistic	 approach	 in	opposition	 to	 the	 atomic	 approach,
and	the	purpose	is	to	show	that,	inside	a	relational	database,	the	holistic	approach	should
be	used	in	most	of	the	cases.

I	tried	to	organize	the	examples	so	they	can	be	compared	and	tested	in	the	readers
systems.	I	invite	you	to	run	the	exercises	and	see	the	differences	for	yourself.

Of	course,	ideally	would	be	to	try	to	imagine	similar	practices	in	your	systems	and
test	one	approach	versus	another	 in	your	 logic	 inside	your	databases.	Even	more	 ideally
would	be	to	try	to	effectively	change	your	style	in	the	systems	you	are	effectively	working
at	 this	 moment,	 if	 that	 applies	 to	 you.	 Only	 looking	 and	 analyzing	 real	 data	 and	 real
scenarios,	you	will	effectively	see	the	differences.

Take	these	examples	and	practices	as	what	they	are:	some	simple	exercises!

The	most	important	things	have	been	already	said	in	the	previous	chapters,	the	main
ideas	have	been	even	repeated	many	times.	These	examples	will	just	reinforce	and	try	to
confirm	the	statements,	advices	and	ideas	expressed	in	the	first	part	of	the	book.

One	of	 the	most	 important	 characteristic	of	 an	exercise	or	practice	 is	 the	context.
The	 context	 of	 an	 example	 consists	 of	 the	 business	 description	 of	 the	 exercise,	 the
technical	 description	 that	 should	 be	 generated	 from	 the	 business	 description,	 the
characteristics	and	prerequisites	of	the	sample,	like	the	data	definition	statements	that	may
be	used	 for	 the	 exercise,	 the	goals	 that	need	 to	be	 achieved	 in	 each	example.	 I	will	 not
insist	 too	much	on	the	business	description	considering	mainly	the	technical	description.
Most	of	the	exercises	are	illustrated	in	both	Oracle	and	SQL	Server,	more	precisely	in	both

PL	SQL	and	Transact	SQL.	Very	often,	I	use	stored	procedures	to	illustrate	the	practices.

Please	take	note	again	of	the	fact	that	the	goal	is	to	illustrate	a	holistic	approach	in	a
relational	database	system.	Almost	all	 the	principles	and	almost	all	 the	examples	can	be
reproduced	 similarly	 in	 any	 other	 database	 system	 like	 IBM	DB2,	 PostgreSQL,	 Sybase
and	others.	Oracle	and	SQL	Server	are	 the	systems	where	I	choose	to	show	the	relevant
examples:	 that	 is	 all!	 These	 principles	 are	 not	 specific	 to	 these	 two	 popular	 database
management	systems,	are	common	to	them	and	to	all	the	others	of	the	same	kind.

To	conclude,	most	of	the	practices	will	contain	the	followings:

1.	 The	practice	will	be	defined	by	a	business	description	followed	by	a	technical
description.

2.	 The	practice	will	contains	a	set	of	data	definition	language	(“DDL”)	statements
associated	with	the	practice,	like	the	list	of	prerequisites	or	the	list	of	tables
involved.

3.	 The	practice	will	contain	the	descriptions	of	the	goals	to	be	achieved	in	the
practice.

4.	 I	will	show	a	sample	of	data,	whenever	will	be	the	case.
5.	 I	will	illustrate	and	describe	the	various	techniques	that	are	used	and	the

explanations	and	reasons	for	choosing	one	technique	or	another.
6.	 I	will	display	the	scripts	in	Oracle	or	SQL	Server,	or	both.	These	scripts	will

sometimes	be	embedded	in	stored	procedures,	as	the	most	representative	type
of	object	in	database	programming.

7.	 I	will	always	compare	the	two	approaches,	because	the	purpose	of	these
examples	is	to	compare	and	describe	the	advantages	or	disadvantages	of	one
style	of	development	or	another.	I	admit	that	the	purpose	of	most	of	the
practices	is	to	promote	the	holistic,	set-oriented	style,	specific	to	database
developers,	against	the	atomic	and	row-oriented	style,	specific	to	application
developers.

PRACTICE	1:	A	FULL	DATA	TRANSFER	BETWEEN	TWO	SYSTEMS	-	ONE
COMMON	OPERATION.

I	tried	to	imagine	simple	and	relevant	exercises	because	the	purpose	is	didactic.	The	first
example	 tries	 to	 illustrate	 one	 common	 situation	 in	 database	 programming,	 the	 data
transfer	paradigm.

Very	 often,	 when	 doing	 database	 development,	 we	 are	 simply	 transferring	 data
between	a	source	and	a	target.	By	transferring	data,	I	can	understand	moving	data	from	A
to	B,	eventually	updating	or	deleting	information	based	on	certain	conditions.	The	process
of	 data	 transfer	 can	 be	 made	 in	 any	 kind	 of	 application,	 in	 a	 classic	 application	 or	 a
specific	application.	It	is	one	of	the	most	common	operations	in	database	programming.

To	illustrate	some	data	transfer	practices,	I	choose	a	simple	model.

You	 can	 imagine	 two	 systems	 and	 you	 can	 imagine	 that	 you	 are	 moving	 data
between	these	two	systems.	The	first	system	is	a	normalized	system	and	the	second	one	is
a	reporting	or	analytic	system	where	a	certain	degree	of	normalization	may	exist.	If	you
prefer,	you	can	rather	imagine	one	single	system	where	the	targets	are	part	of	the	reporting

area	of	that	system.

A	data	 transfer	can	be	 full	or	 incremental.	 I	 consider	 the	 transfer	a	 full	one	 if	 the
target	 is	 completely	 deleted	 before	 the	 transfer.	 An	 incremental	 transfer	 is	 committed
when	 the	 data	 is	 moved	 incrementally,	 only	 the	 changes	 from	 the	 source	 system	 are
applied	to	the	target.

The	 first	 example	 will	 illustrate	 a	 full	 transfer	 and	 the	 second	 will	 show	 an
incremental	data	transfer,	a	more	complex	scenario.

Let’s	define	the	context!	This	is	going	to	be	the	base	for	most	of	the	practices	that
will	follow!

FILTER	ENGLISH	OR	EUROPEAN	COUNTRIES:	THE	BUSINESS	AND
TECHNICAL	DESCRIPTION	AND	GOALS

The	 context	 specifies	 the	 descriptions	 of	 both	 source	 and	 target	 systems.	 A	 set	 of
countries,	 languages	 and	 their	 association	 is	 part	 of	 the	 source	 system	 and	 a	 set	 of
reporting	 tables	 per	 language	 is	 part	 of	 the	 destination	 system.	The	 source	 system,	 let’s
name	it	A,	contains,	among	others,	a	set	of	three	tables	to	store	the	following	information:

1.	 The	source	will	contain	a	list	of	countries.
2.	 The	source	will	contain	a	list	of	languages.
3.	 The	source	will	contain	the	association	between	countries	and	languages,

including	some	common	information	per	both	country	and	language.

The	target	system,	let’s	say	B,	may	be	a	separate	system	or	not.	You	can	consider	a
separate	reporting	system,	where	the	data	is	denormalized	according	to	the	language.	The
system	contains,	among	others,	a	list	of	tables	per	language	with	country	information.

As	examples,	I	choose	one	table	for	the	English	language	and	one	for	French.	You
can	 imagine	 that	 the	 target	 system	 contains	 a	 list	 of	 reporting	 tables	 per	 language.	 For
simplicity,	 I	 assume	 just	 English	 and	 French	 languages,	 because	 these	 languages	 are
enough	to	illustrate	my	goals.

The	 information	 from	 the	 source	 system	A	 should	 be	moved	 into	 the	 destination
system	 B.	 The	 goal	 is	 to	 generate	 the	 set	 of	 countries	 for	 the	 English	 language	 in	 the
specific	table	containing	only	the	English	countries	and,	eventually,	the	set	of	countries	for
French	language	in	the	specific	table	containing	the	French	countries.

FILTER	ENGLISH	OR	FRENCH	EUROPEAN
COUNTRIES:	THE	PREREQUISITES.

Let’s	 continue	 with	 the	 context	 definition.	 We	 just	 saw	 the	 business	 and	 technical
description	 of	 the	 context.	 Now	 let’s	 see	 the	 table	 design.	 The	 source	 system	 A	 is
composed	of	three	tables,	as	you	can	see	below:

Code	example	03:	Countries	and	languages	design

CREATE	TABLE	Countries

(

Country_Id	INT	CONSTRAINT	NN_Country_Id	NOT	NULL,

Country_Code	VARCHAR(3)	CONSTRAINT	NN_Country_Code	NOT	NULL,

Country_Name	VARCHAR(50)	CONSTRAINT	NN_Country_Name	NOT	NULL,

Continent	VARCHAR(15)	CONSTRAINT	NN_Country_Continent	NOT	NULL,

CONSTRAINT	PK_Country_Id	PRIMARY	KEY	(Country_Id),

CONSTRAINT	UQ_Country_Code	UNIQUE	(Country_Code),

CONSTRAINT	CK_Country_Continent

CHECK(Continent	 IN	 (‘Europe’,	 ‘North	 America’,’South	 America’,	 ‘Asia’,	 ‘Africa’,	 ‘Australia’,

‘Central	America’))

);

CREATE	TABLE	Languages

(

Language_Id	INT	CONSTRAINT	NN_Language_Id	NOT	NULL,

Language_Name	VARCHAR(50)

CONSTRAINT	NN_Language_Name	NOT	NULL,

CONSTRAINT	PK_Language_Id	PRIMARY	KEY	(Language_Id),

CONSTRAINT	UQ_Language_Name	UNIQUE	(Language_Name)

);

CREATE	TABLE	Countries_Languages

(

CL_Id	INT	CONSTRAINT	NN_CL_Id	NOT	NULL,

Language_Id	INT	CONSTRAINT	NN_CL_Language_Id	NOT	NULL,

Country_Id	INT	CONSTRAINT	NN_CL_Country_Id	NOT	NULL,

Language_Category	VARCHAR(10)

CONSTRAINT	NN_CL_Category	NOT	NULL,

Make_Flag	INT,

CONSTRAINT	PK_CL_Id	PRIMARY	KEY	(CL_Id),

CONSTRAINT	UQ_Language_Country

UNIQUE	(Language_Id,	Country_Id),

CONSTRAINT	CK_CL_Category

CHECK	(Language_Category	IN	(‘MAIN’,	‘SECONDARY’)),

CONSTRAINT	CK_CL_Make_Flag	CHECK	(Make_Flag	IN	(0,	1)),

CONSTRAINT	FK_CL_Countries

FOREIGN	KEY	(Country_Id)	REFERENCES	Countries(Country_Id),

CONSTRAINT	FK_CL_Languages

FOREIGN	KEY	(Language_Id)	REFERENCES	Languages	(Language_Id)

);

--	Build	an	Oracle	sequence	too

CREATE	SEQUENCE	CL_Id_Seq;

According	 to	 the	 above	 design,	 there	 is	 one	 table	 for	 the	 countries,	 one	 for	 the
languages	and	one	for	the	association	between	the	countries	and	the	languages.	According
to	the	business	needs,	some	languages	should	be	associated	with	some	countries	and	some
common	information	will	be	added	there.

Despite	the	fact	that	these	are	well-known	design	tips,	for	the	non-SQL	specialists,
readers	of	this	book,	I’ll	try	to	add	some	basic	considerations.	By	looking	at	the	script,	we
notice	 the	 following	aspects,	 concerning	 the	 first	 chapters	when	we	discussed	 about	 the
fact	that	the	first	stage	of	development	is	actually	the	base-objects	design,	especially	tables
design.	I	want	to	review	some	of	the	design	considerations	looking	at	this	script.

1.	 Every	table	has	its	own	primary	key,	as	it	should	be	in	a	normalized	system.
The	primary	key	is	enforced	by	an	artificial	column,	with	no	business	meaning.

This	is	the	most	common	scenario.	I	always	prefer	to	keep	the	primary	key
away	from	the	business!

2.	 Sometimes,	when	the	primary	key	is	artificial	we	can	add	a	unique	constraint.
That	is	the	so-called	unique	business	key	and	that	defines	the	table,	from	the
business	point	of	view.	For	example,	the	code	of	the	country	should	be	unique
and	that	code	has	a	business	meaning,	compared	with	the	artificial	key	that	has
the	only	purpose	to	uniquely	identify	one	row.	The	combination	language	and
country	should	also	be	unique	in	the	association	table,	so	you	can	see	the
unique	constraint.	The	business	key	can	be	defined	as	primary	key.	Technically
speaking	is	a	suitable	candidate.	Still,	I	prefer	to	separate	things	and	to	always
let	the	primary	key	away	from	the	business.

3.	 The	constraints	are	all	named	constraints,	not	system	generated.	The	names	are
very	relevant,	generally	obtained	by	the	concatenation	between	the	table,
column	and	constraint	type.	The	names	can	be	seen	in	the	set	of	system	objects
or	data	dictionary	and	the	developer	does	not	need	to	investigate	very	much,	he
can	already	understand	looking	at	the	names.	The	constraint	names	are	also
visible	in	error	messages	and	the	developer	will	quickly	see	what	is	about.	I
recommend	that	the	prefix	of	the	constraint	to	be	the	constraint	type.

4.	 Add	the	check	constraints	or	foreign	key	constraints	whenever	is	possible.	If
you	know	exactly	the	values,	do	not	hesitate	and	do	not	leave	the	columns
optional.	Combine	the	check	constraints	with	NOT	NULL	constraints.	In	most
of	the	cases,	a	column	with	low	selectivity	can	have	a	check	constraint.	See	if
that	is	the	case	and	add	both	constraints,	if	possible.	If	the	list	with	values
defined	by	the	check	constraint	will	increase	in	time,	you	should	transform	the
check	constraint	into	a	foreign	key	constraint.	Add	a	lookup	table	first	and
restrict	the	table	using	that	lookup	table.	Before	choosing	the	type	of
constraint,	think	in	perspective.	Even	if	now	there	are	some	few	values,	if	you
anticipate	the	list	may	grow,	add	the	lookup	table	from	the	beginning.

5.	 It	is	good	to	apply	the	constraints	and	to	restrict	the	data	to	be	conformed	to	the
business	definition.	If	the	layer	of	constraints	is	properly	set	from	the
beginning,	you	have	a	good	starting	point	in	your	database	development
activity.	You	can	see	in	the	example	that	almost	every	column	has	at	least	one
constraint	attached	to	it.	Of	course,	there	are	descriptive	fields	that	will	not
have	any	constraints.	However,	the	tip	is	to	try	to	see	if	any	type	of	constraint
can	be	applied	in	one	way	or	another	to	the	column	and	do	this	investigation
constantly	for	any	column	in	any	table.

6.	 You	can	see	that	this	script	can	be	executed,	with	absolutely	no	change,	in
Oracle	and	SQL	Server	and	in	others	database	systems	too.	Take	note	again	of
the	advantage	of	the	standard.1

Let’s	 continue	 and	 illustrate	 the	 destination	 system.	 The	 target	 system	 B	 is
composed	of	a	list	of	reporting	tables,	per	country.

Code	example	04:	English	and	French

CREATE	TABLE	English_European_Countries

(

English_CL_Id	INT	CONSTRAINT	NN_English_CL_Id	NOT	NULL,

Country_Code	VARCHAR(3)

CONSTRAINT	NN_LCountry_Code	NOT	NULL,

Country_Name	VARCHAR(50)

CONSTRAINT	NN_LCountry_Name	NOT	NULL,

Language_Category	VARCHAR(10),

CONSTRAINT	PK_English_CL_Id	PRIMARY	KEY	(English_CL_Id),

CONSTRAINT	UQ_ECountry_Code_Category

UNIQUE	(Country_Code,	Language_Category));

CREATE	TABLE	French_European_Countries

(

French_CL_Id	INT	CONSTRAINT	NN_French_CL_Id	NOT	NULL,

Country_Code	VARCHAR(3)

CONSTRAINT	NN_FCountry_Code	NOT	NULL,

Country_Name	VARCHAR(50)

CONSTRAINT	NN_FCountry_Name	NOT	NULL,

Language_Category	VARCHAR(10),

CONSTRAINT	PK_French_CL_Id	PRIMARY	KEY	(French_CL_Id),

CONSTRAINT	UQ_FCountry_Code_Category

UNIQUE	(Country_Code,	Language_Category)

);

Others	reporting	tables	may	be	added	per	various	languages.

You	can	imagine	a	reporting	activity	where	the	reports	are	set	per	language	and	the
data	 is	 divided	 per	 language.	 The	 examples	 want	 to	 illustrate	 a	 style,	 and	 this	 style	 is
recommended	in	the	database	in	most	of	the	cases,	a	classic	system	but	mostly	a	specific
system	like	a	replication	system,	a	data	migration	system	or	a	data	warehouse	system.

FILTER	ENGLISH	OR	FRENCH	EUROPEAN:	THE	SAMPLE	OF	DATA

Let’s	 see	 the	 initial	 data!	 This	 is	 very	 useful	 for	 the	 illustration	 of	most	 examples.	 For
anyone	working	in	the	database,	programmer	or	analyst	or	tester,	 the	data	should	have	a
strong	 relevancy.	 The	 business	 reflects	 in	 the	 data.	 Any	 database	 design	 should	 be
associated	with	some	samplings.

Seeing	the	initial	data	is	also	useful	because	the	reader	can	simply	generate	all	the
examples	completely	in	his	machine	and	he	may	see	with	his	own	eyes	the	results,	he	may
have	a	confirmation	of	all	the	things	that	have	been	explained.

See	the	data	values	in	tabular	format	see	the	table	Countries.

See	the	data	values	in	tabular	format	see	the	table	Languages.

See	the	data	values	in	tabular	format	see	the	table	Countries	Languages.

AN	EXAMPLE	OF	INSERT	SCRIPT!

Before	starting	the	first	example,	due	to	the	fact	 that	most	of	the	exercises	will	be	taken
from	these	samplings	with	countries	and	languages,	I	would	rather	specify	the	insert	script
here	so	anyone	who	wants	to	effectively	execute	all	the	practices	to	have	the	possibility	to
reproduce	the	exact	conditions	as	in	my	system.

This	 is	 the	 so	 called	 “insert	 script”	 or,	 in	 our	 case,	 initialization	 script.	 The
countries,	 languages	 and	 their	 associations	 are	 initialized	 with	 the	 required	 quantity	 of
data.	The	 tables	above	show	 this	 initial	data.	Now	the	same	data	can	be	seen	 in	a	more
technical	manner,	in	an	insert	script.

Code	example	05:	Populate	countries	and	languages

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(1,	‘AR’,

‘Argentina’,	‘South	America’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(2,	‘AT’,

‘Austria’,	‘Europe’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(3,	‘FR’,

‘France’,	‘Europe’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(4,	‘MT’,

‘Malta’,	‘Europe’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(5,	‘ES’,

‘Spain’,	‘Europe’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(6,	‘CH’,

‘Switzerland’,	‘Europe’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(7,	‘NL’,

‘The	Netherlands’,	‘Europe’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(8,	‘UK’,

‘United	Kingdom’,	‘Europe’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)	VALUES	(9,	‘US’,

‘United	States	of	America’,	‘North	America’);

INSERT	INTO	Languages	(Language_Id,	Language_Name)	VALUES	(1,	‘Dutch’);

INSERT	INTO	Languages	(Language_Id,	Language_Name)	VALUES	(2,	‘English’);

INSERT	INTO	Languages	(Language_Id,	Language_Name)	VALUES	(3,	‘French’);

INSERT	INTO	Languages	(Language_Id,	Language_Name)	VALUES	(4,	‘German’);

INSERT	INTO	Languages	(Language_Id,	Language_Name)	VALUES	(5,	‘Maltese’);

INSERT	INTO	Languages	(Language_Id,	Language_Name)	VALUES	(6,	‘Spanish’);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(1,	1,	6,	‘MAIN’,	0);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(2,	2,	4,	‘MAIN’,	1);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(3,	3,	3,	‘MAIN’,	1);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(4,	4,	2,	‘MAIN’,	1);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(5,	4,	5,	‘MAIN’,	0);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(6,	5,	6,	‘MAIN’,	NULL);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(7,	6,	3,	‘MAIN’,	1);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(8,	6,	4,	‘MAIN’,	0);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_Id,	 Language_Category,

Make_Flag)	VALUES	(9,	6,	2,	‘SECONDARY’,	1);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(10,	7,	1,	‘MAIN’,	1);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_Id,	 Language_Category,

Make_Flag)	VALUES	(11,	7,	2,	‘SECONDARY’,	0);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(12,	8,	2,	‘MAIN’,	1);

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_	 Id,	 Language_Category,

Make_Flag)	VALUES	(13,	9,	2,	‘MAIN’,	0);

FILTER	ENGLISH	OR	FRENCH	EUROPEAN	COUNTRIES:
THE	TWO	OF	THE	POSSIBLE	SOLUTIONS,	ACCORDING
TO	THE	TWO	STYLES	OF	DEVELOPMENT.

The	 first	 example	 is	 relatively	 simple.	Even	 an	 application	developer	with	 not	 so	much
SQL	experience	may	choose	the	holistic	approach.	Still,	this	is	rarely	happening.

Let’s	analyze	the	data	elements	once	more	before	starting	to	see	the	examples.

You	 can	 see	 from	 the	 sample	 that	 there	 is	 a	 list	 of	 countries,	 with	 an	 artificial
identifier,	 a	 name,	 a	 unique	 code	 and	 the	 continent.	 The	 languages	 table	 has	 just	 the
artificial	identifier	and	the	name	of	the	language.	The	association	table	has	one	language
and	one	country,	 like	any	association	 table.	Apart	 from	 that,	 the	category	of	 a	 language
can	be	main	or	 secondary	 for	 the	 country	 and	 there	 is	 a	 flag	 for	 each	country	 language
combination.	 The	 destination	 table	 has	 another	 artificial	 identifier	 as	 primary	 key,	 the
country	code,	name	and	the	category.	We	are	positioned	in	the	English	or	French	language
so	we	know	that	we	are	within	a	certain	language.	That	is	why	any	language	reference	is
not	required,	just	the	country	information.

Let’s	 suppose	 that	 this	 task	 is	 done	 by	 an	 authentic	 application	 developer	 that
always	sees	things	atomically.

He	 understood	 the	 cursors	 functionalities	 and	 he	 is	 used	 to	 implement	 cursors	 in
combination	 with	 the	 associated	 loop	 statements.	 Let’s	 see	 the	 first	 solution,	 and	 the
atomic	approach.

I	 named	 the	 procedure	 as	 such	 because	 I	 want	 to	 illustrate	 that	 the	 procedure	 is

atomic.	The	transfer	is	a	full	transfer	because	the	target	table	with	countries	is	first	deleted.
Let’s	see	the	Oracle	version.

Code	example	06:	Oracle	Atomic	Full	transfer

CREATE	PROCEDURE	Atomic_Full_Transfer_Country

(p_Language_Name	VARCHAR)

AS

v_Country_Name	VARCHAR2(50);

v_Country_Code	VARCHAR2(3);

v_Language_Category	VARCHAR2(10);

v_New_EEC_Id	INT;

CURSOR	c_Get_Countries	(p_Language	VARCHAR2)	IS

SELECT	c.Country_Name,	c.Country_Code,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	p_Language;

BEGIN

v_New_EEC_Id	:=	1;

IF	p_Language_Name	=	‘English’	THEN

DELETE	English_European_Countries;

ELSIF	p_Language_Name	=	‘French’	THEN

DELETE	French_European_Countries;

END	IF;

OPEN	c_Get_Countries	(p_Language_Name);

LOOP

FETCH	c_Get_Countries

INTO	v_Country_Name,	v_Country_Code,	v_Language_Category;

EXIT	WHEN	c_Get_Countries%NOTFOUND;

IF	p_Language_Name	=	‘English’	THEN

INSERT	INTO	English_European_Countries	(English_CL_Id,

Country_Code,	Country_Name,	Language_Category)

VALUES	(v_New_EEC_Id,	v_Country_Code,	v_Country_Name,	v_

Language_Category);

ELSIF	p_Language_Name	=	‘French’	THEN

INSERT	INTO	French_European_Countries	(French_CL_Id,

Country_Code,	Country_Name,	Language_Category)

VALUES	(v_New_EEC_Id,	v_Country_Code,	v_Country_Name,	v_

Language_Category);

END	IF;

v_New_EEC_Id	:=	v_New_EEC_Id	+	1;

COMMIT;

END	LOOP;

CLOSE	c_Get_Countries;

END	Atomic_Full_Transfer_Country;

/

This	 is	 the	 first	 solution	 using	 the	 atomic	 approach	 and	 the	 associated	 style	 of
development.	 Just	 to	 clarify,	 even	 if	 these	 details	 should	 be	 straight	 forward,	 I	 will

describe	the	flow	for	the	first	example,	in	the	atomic	approach.

1.	 The	parameter	is	the	language,	either	French	or	English	and	the	list	may
expand	for	others	languages,	of	course.

2.	 The	developer	is	declaring	some	variables	to	store	the	data	to	be	inserted,	for
country	name	and	code,	for	the	language	category	and	for	the	key	identifier
that	he	should	generate.	Obviously,	he	can	use	a	record	or	structure	instead	of
the	variables	and	achieve	the	same	goal.	The	purpose	is	to	be	able	to	store
atomically	the	values	to	be	inserted	in	these	variables.	You	can	already	see	how
the	programmer	sees	things	atomically	and	he	is	preparing	to	store	the	data	and
manipulate	it	at	the	atomic	(row)	level.

3.	 The	application	programmer	is	declaring	the	cursor	that	will	store	the	country
name,	code	and	the	language	category	from	the	series	of	source	tables
Countries	Languages,	Languages	and	Countries.	The	cursor	with	the	loop
facility,	that	allows	us	to	position	wherever	we	want	it	in	the	data	set,	is	the
base	for	the	atomic	approach.

4.	 We	initialize	the	value	for	the	identifier	to	one,	using	the	dedicated	variable
v_New_EEC_Id.	The	primary	key	from	the	target,	an	artificial	identifier,	will
have	to	receive	a	unique	value	taken	from	this	variable.

5.	 Based	on	the	language,	either	English	or	French,	the	logic	deletes	one
reporting	table	or	another.	The	transfer	is	full	so	the	target	table	is	deleted	first.

6.	 The	programmer	opens	the	cursor	and	starts	adding	the	values	from	the	cursor
into	the	variables	using	the	fetch	instruction.	This	is	the	classic	series	of	steps
in	every	cursor.

7.	 Based	on	the	language,	the	data	is	added	into	the	target	table,	row	by	row.	For
every	row,	the	data	is	inserted	from	the	variables	that	stores	the	current	set	of
values	from	the	cursor.	The	same	if-else	statement	is	used	to	detect	the	target
table	based	on	the	language.

8.	 The	developer	will	increment	the	key	to	prepare	the	next	value	for	the	next
iteration.

9.	 This	procedural	style	corresponds	to	the	atomic	approach	of	programming.
This	is	the	type	of	development	that	the	application	developer	is	familiarized
by	analogy	with	the	models	that	he	knows.	Many	application	developers	think
in	this	manner,	by	default.	They	think	atomically	in	almost	any	circumstance
and	they	try	to	use	the	same	style	in	the	database	like	in	the	user	interface.
They	know	the	principles	of	structured	programming	and	they	apply	them	here
at	the	row	level,	trying	to	use	the	same	style	everywhere.

Let’s	see	the	results,	for	both	countries.

Before	continuing	to	comment	more	this	approach	let’s	see	the	SQL	Server	version
of	the	atomic	approach.	You	may	see	all	the	steps,	and	understand	the	classic,	procedural
and	 atomic	 style	 of	 development.	 Move	 the	 data	 into	 the	 variables	 one	 by	 one	 and
populate	 the	 table	 with	 new	 rows	 one	 by	 one	 according	 to	 the	 values	 stored	 in	 the
variables.

Code	example	07:	SQL	Server	Atomic	Full	transfer

CREATE	PROCEDURE	Atomic_Full_Transfer_Country

(

@p_Language_Name	VARCHAR(50)

)

AS

DECLARE	@v_Country_Name	VARCHAR(50);

DECLARE	@v_Country_Code	VARCHAR(3);

DECLARE	@v_Language_Category	VARCHAR(10);

DECLARE	@v_New_EEC_Id	INT;

DECLARE	c_Get_Countries	CURSOR	FOR

SELECT	c.Country_Name,	c.Country_Code,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	UPPER(l.Language_Name)	=	UPPER(@p_Language_Name);

BEGIN

SET	@v_New_EEC_Id	=	1;

IF	@p_Language_Name	=	‘English’

DELETE	English_European_Countries;

ELSE	IF	@p_Language_Name	=	‘French’

DELETE	French_European_Countries;

OPEN	c_Get_Countries

FETCH	NEXT	FROM	c_Get_Countries

INTO	@v_Country_Name,	@v_Country_Code,	@v_Language_Category;

WHILE	(@@FETCH_STATUS	=	0)

BEGIN

IF	@p_Language_Name	=	‘English’

INSERT	INTO	English_European_Countries	(English_CL_Id,	Country_Code,	Country_Name,

Language_Category)

VALUES	(@v_New_EEC_Id,	@v_Country_Code,	@v_Country_	Name,	@v_Language_Category);

ELSE	IF	@p_Language_Name	=	‘French’

INSERT	 INTO	 French_European_Countries	 (French_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

VALUES	(@v_New_EEC_Id,	@v_Country_Code,	@v_Country_Name,	@v_Language_Category);

SET	@v_New_EEC_Id	=	@v_New_EEC_Id	+	1;

FETCH	NEXT	FROM	c_Get_Countries	INTO	@v_Country_Name,	@v_

Country_Code,	@v_Language_Category;

END

CLOSE	c_Get_Countries;

DEALLOCATE	c_Get_Countries;

END

GO

You	may	see	how	the	data	is	manipulated	atomically	and	procedurally,	row	by	row.
The	programmer	 completely	 excludes	 the	holistic	manipulation	of	 the	data	 set	 from	his
logic.	He	may	be	aware	of	the	data	set	because	the	query	that	defines	the	cursor	is	the	data
set.	However,	the	developer	cannot	understand	or	even	worse,	he	cannot	accept	that	he	can
handle	 the	data	set	as	a	whole	with	SQL	and	he	 is	 trying	 to	divide	 it	 right	away	and	by
default.	The	application	developer	considers	that	the	row	is	the	only	thing	he	should	take
into	 consideration	 when	 writing	 his	 code.	 He	 does	 not	 try	 to	 analyze	 and	 he	 does	 not
question	himself	if	he	can	solve	the	problem	in	a	holistic	manner,	he	is	prepared	by	default
to	divide	everything	in	rows,	at	the	lowest	level	of	detail.	This	style	of	development	is	a
consequence	of	his	classic	and	typical	vision	against	programming	and	of	his	decision	to
ignore	the	fact	that	he	is	developing	now	in	a	specific,	data-oriented	environment,	where
the	concept	of	data	set	should	be	incorporated	into	what	he	already	knows,	his	structured
model	of	programming.

It	is	true	that	sometimes	we	need	to	solve	things	atomically.	There	are	business	and
technical	 situations	 where	 the	 division	 is	 required	 because	 some	 problems	 cannot	 be
simply	solved	at	the	data	set	level	and	the	division	from	data	set	to	data	row	is	necessary.
Still,	very	often	most	of	our	tasks	can	be	solved	holistically	by	affecting	everything	as	a
whole	 and	 not	 piece-by-piece	 or	 row	 by	 row.	 This	 makes	 the	 big	 difference	 between
someone	 thinking	holistically,	between	a	SQL	oriented	developer	and	 someone	 thinking
atomically,	procedural,	non-SQL.	An	application	developer	 is	used	 to	handle	 things	 in	a
certain	way	and	 this	 is	 the	 first	example.	One	can	see	how	the	developer	declares	 those
variables,	he	is	declaring	the	cursor;	he	is	opening	it	and	stores	the	data	row-by-row	in	an
atomic	 manner,	 see	 how	 he	 is	 generating	 the	 new	 identifier	 in	 the	 classical	 style	 by
incrementing	the	next	value	in	the	cursor.	Let’s	imagine	that	you	have	a	replication	system
or	 a	 data	migration	 system,	 that	 type	of	 specific	 application	 I	was	 talking	 about	 earlier.
Let’s	imagine	you	are	moving	medium	to	large	quantities	of	data	from	different	sources	to
different	targets	and	imagine	you	are	following	the	atomic	approach.	The	first	one	should
suffer	 is	 the	performance.	You	can	add	 thousands	of	 indexes;	you	can	do	whatever	you
want.	 You	 will	 not	 solve	 too	 much	 of	 the	 issue.	 The	 issue	 is	 the	 improper	 style	 of
programming.

The	programmer	thinks	atomically	and	normally	he	shouldn’t!	The	programmer	is
using	the	procedural	language,	the	procedural	advanced	facilities	like	cursors,	records	and
others	 by	 default.	 The	 programmer	 is	 following	 the	 atomic	 approach	 in	 almost	 any
circumstance	 even	 if	 he	 may	 complete	 his	 task	 at	 the	 holistic	 level	 by	 using	 the	 SQL

language	and	the	set-oriented	style	of	development.

Let’s	 see	 the	 holistic,	 SQL	 approach	 for	 the	 same	 example.	 Let’s	 notice	 the
differences	in	terms	of	readability	and	simplicity,	see	how	clear	the	code	is	in	the	holistic
approach	comparing	with	the	code	in	the	atomic	approach.	Let’s	see	the	Oracle	version	of
the	full	transfer,	the	holistic	approach.

Code	example	08:	Oracle	Holistic	Full	transfer

CREATE	PROCEDURE	Holistic_Full_Transf_Country

(

p_Language_Name	VARCHAR

)

AS

BEGIN

DELETE	English_European_Countries

WHERE	p_Language_Name	=	‘English’;

DELETE	French_European_Countries

WHERE	p_Language_Name	=	‘French’;

INSERT	 INTO	 English_European_Countries	 (English_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	ROW_NUMBER()	OVER	(ORDER	BY	c.Country_Code,	cl.Language_Category)	AS	English_CL_Id,

c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	p_Language_Name

AND	p_Language_Name	=	‘English’;

INSERT	 INTO	 French_European_Countries	 (French_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	ROW_NUMBER()	OVER	(ORDER	BY	c.Country_Code,	cl.Language_Category)	AS	French_CL_Id,

c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	p_Language_Name

AND	p_Language_Name	=	‘French’;

COMMIT;

END	Holistic_Full_Transf_Country;

/

Let’s	just	try,	compare,	and	see	the	simplicity	of	the	holistic	approach.	This	Oracle
stored	 procedure	 contains	 only	 SQL	 statements,	 no	 procedural	 instructions.	 The	 stored
procedure	contains	two	delete	statements	and	two	insert	statements	and	that’s	all	we	have!
The	logic	moves	the	data	in	data	sets,	in	waves,	as	I	like	to	say.	The	entire	transfer	is	seen
as	one	transfer	and	there	was	no	need	for	any	movement	to	the	row	level.	Let’s	see	now
the	SQL	Server	version	of	the	holistic	approach	and	then	analyze	with	more	details.

Code	example	09:	SQL	Server	Holistic	Full	transfer

CREATE	PROCEDURE	Holistic_Full_Transf_Country

(

@p_Language_Name	VARCHAR(50)

)

AS

BEGIN

DELETE	English_European_Countries

WHERE	@p_Language_Name	=	‘English’;

DELETE	French_European_Countries

WHERE	@p_Language_Name	=	‘French’;

INSERT	 INTO	 English_European_Countries	 (English_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	ROW_NUMBER()	OVER	(ORDER	BY	c.Country_Code,	cl.Language_Category)	AS	English_CL_Id,

c.Country_Code,	c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	@p_Language_Name	AND	@p_Language_Name	=	‘English’;

INSERT	 INTO	 French_European_Countries	 (French_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	ROW_NUMBER()	OVER	(ORDER	BY	c.Country_Code,	cl.Language_Category)	AS	French_CL_Id,

c.Country_Code,	c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	@p_Language_Name

AND	@p_Language_Name	=	‘French’;

END

GO

Let’s	analyze	the	logic	in	steps	as	we	did	for	the	atomic	versions:

1.	 Delete	the	table	with	English	or	French	languages,	based	on	the	parameter’s
value.	The	deletion	is	holistic:	all	the	countries	for	the	respective	language	are
deleted.

2.	 Insert	the	English	or	French	countries,	based	on	the	value	of	the	parameter,	in
one	single	instruction	and	in	a	holistic	manner:	all	the	countries	for	the
respective	languages	are	added	and	the	new	identifier	is	generated	holistically
using	the	function	row	number.	Both	steps	are	set	based	and	holistic.	Either	2
countries,	or	10	countries,	or	100	or	1000	countries,	all	of	them	are	added	in
one	single	statement.	We	have	one	set	of	countries,	we	do	not	care	how	many
are	within	the	data	set,	we	visualize	the	set	of	countries	and	we	do	not	care
about	any	detail.	We	do	not	care	at	all!

I	believe	the	difference	in	terms	of	simplicity	is	obvious.	Moreover,	also	in	terms	of
portability	 things	 should	 be	 clear	 now	with	 this	 example.	 The	 only	 difference	 between
Oracle	 and	SQL	Server	 resided	 in	 the	naming	 convention	 for	 variables	because	 in	SQL
Server	the	“@”	sign	is	required!	I	hope	I	clarified	this	advantage	of	the	holistic	approach:
portability.

The	versions	of	stored	procedures	are	almost	identical!	For	the	procedural	approach,
although	 similar,	 there	 are	 differences	 in	 the	 specific	 syntax.	 You	 need	 to	 know	 the
specific	syntax	for	SQL	Server,	the	procedural	language	of	Transact	SQL	or	you	need	to
know	the	procedural	 language	 for	Oracle,	you	need	 to	know	PL	SQL.	These	procedural
languages	are	similar	in	some	aspects,	more	different	in	others.	There	is	no	standard	here,
just	 the	 same	 principles	 of	 structured	 programming.	 Although	 I	 consider	 that	 is	 not	 a
difficult	 task	 to	 learn	a	new	programming	database	 language	especially	when	you	know
another	 one,	 it	 is	 some	 work	 to	 be	 done!	 For	 the	 holistic	 approach,	 things	 are	 much
simpler.	The	standard	is	followed	by	all	the	vendors	inside	their	programming	languages.
The	 SQL	 from	 SQL	 Server	 and	 the	 SQL	 from	 Oracle	 are	 almost	 the	 same.	 Even	 if
different,	the	differences	may	be	accommodated	easily.

Dear	 reader,	 I	 advise	 you	 to	 try	 and	 to	 solve	 similar	 exercises	 in	 both	manners!
Please	try	to	identify	the	data	set,	affect	it	in	a	holistic	manner,	and	try	to	divide	the	data
set	 into	 rows,	 use	 the	 cursors	 and	 complete	 the	 task	 using	 the	 atomic	 and	 procedural
approach.	Apart	 from	 the	 fact	 that	 the	 code	 looks	 so	different,	 apart	 from	 the	 increased
complexity	 of	 the	 procedural	 approach,	 in	 most	 of	 the	 cases,	 you	 can	 check	 the
performance	when	you	have	medium	to	large	quantities	of	data.	It	is	obvious	that,	for	2-3
rows	you	will	not	see	a	big	difference	in	performance!

The	first	thing	that	you	need	to	do	when	implementing	a	practice	in	the	two	ways	is
to	 check	 the	 results.	 You	 need	 to	 check	 the	 results	 after	 the	 execution	 in	 the	 atomic
approach,	save	the	results,	go	back	to	the	starting	conditions	and	implement	the	solution
using	the	holistic	approach.	Compare	the	results	and,	 if	 there	are	differences,	 try	to	look
and	see	why.	If	 the	logic	is	well	written,	 there	should	be	no	differences.	Do	that	for	 this
example	 and	compare	 the	 content	of	 the	destination	 table	 after	both	 executions,	 in	both
systems.

After	you	make	sure	the	results	sets	are	correct,	you	may	check	the	performance.	I
was	not	able	to	see	many	cases	where	the	performance	in	the	database	suffered	due	to	the
holistic	approach	versus	the	atomic	approach.	Of	course,	using	the	holistic	approach,	we
still	need	to	focus	on	optimizing	the	SQL	itself	and	that	means	adding	indexes,	checking
the	execution	plans	to	detect	possible	reasons	for	performance	issues,	checking	statistics
etc.	More	than	that,	even	the	SQL	itself	can	be	improved.	Writing	SQL	instead	of	writing
procedurally	 is	 the	 first	 condition	 for	 a	 good	 performance.	 The	 second	 condition	 is	 to
know	how	to	write	the	best	SQL.	In	addition,	for	that,	a	good	database	developer	will	take
the	 SQL	 and	 rewrite	 it	 repeatedly	 until	 he	 has	 its	 best	 code.	 After	 that	 he	 can	 apply
additional	 facilities	 like	 all	 kinds	 of	 indexes,	 add	 materialized	 views	 in	 a	 static
environment	 like	a	data	warehouse	and	so	many	others.	All	 these	performance	 facilities
are	useless	 if	are	applied	 to	 the	atomic	and	procedural	code.	The	atomic	and	procedural
code	itself	will	generate	a	poor	performance	not	the	lack	of	indexes,	statistics	and	the	rest
of	the	things	that	we	need	to	gather	during	the	lifetime	of	any	database.

Normally,	in	my	opinion,	any	programmer	should	be	aware	of	the	holistic	approach.
No	one	should	write	atomically	in	the	database.	At	least	not	simple	problems	as	the	ones
mentioned	here.	They	should	not	be	solved	atomically.	Afterwards,	if	the	performance	still
suffers,	we	need	true	database	developers	that	will	be	able	to	rewrite	the	holistic	code	and
improve	it.	For	that,	 indeed,	a	specialized	SQL	developer	is	required,	a	programmer	that

really	likes	SQL	and	has	a	deep	understanding	of	the	relational	model	and	SQL.	However,
before	 that,	 before	 his	 intervention,	 the	 use	 of	 a	 holistic	 approach	 is	 enough	 for	 any
programmer.	This	is	my	vision	and	I	am	not	afraid	to	state	it	here.

If	you	analyze	the	holistic	approach	and	compare	it	with	the	atomic	approach,	you
will	see	how	the	degree	of	simplicity	is	obvious	in	the	favor	of	the	holistic	approach.	To
be	able	to	see	that,	if	you	are	an	application	developer,	you	need	to	try	to	be	objective	and
you	also	need	to	try	to	free	yourself	a	bit	from	your	paradigms	and	models,	you	should	try
to	be	able	to	forget	and	ignore	the	classic	style	of	development	you	are	caught	in.

Now	 let’s	 look	 at	 the	 holistic	 approach	 and	 see	 how	 the	 procedural	 code	 was
completely	avoided:	even	 the	 if-else	was	excluded	 from	 the	 logic!	 I	 removed	 the	 if-else
and	replaced	it	with	the	condition	for	the	parameter	to	be	English	or	French	especially	to
see	that,	at	the	limit,	we	can	minimize	the	use	of	procedural	code	completely.	Especially	in
a	replication	system	written	in	SQL,	an	“ETL”	or	a	data	migration	system,	this	is	a	great
advantage	in	terms	of	performance,	the	data	movement	to	be	done	in	data	sets,	the	fastest
possible	way!

Working	set	based,	holistically	and	working	SQL	is	the	most	suitable	style	within	a
relational	database,	it	is	the	authentic	style	of	a	database	developer.

Building	 a	 specific	 data	migration	 system	 in	 the	 holistic	manner	 requires	 having
good	 SQL	 professionals	 with	 a	 perfect	 understanding	 of	 the	 data.	 That	means	 firstly	 a
good	understanding	of	the	concept	of	data	set.	Some	developers	that	think	SQL	are	more
valuable	than	anyone	within	this	context.	You	can	build	a	replication	system	in	pure	SQL
instead	of	using	whatever	tool!	I	believe	that	very	often	the	use	of	tools	can	be	avoided.

Let’s	go	back.	This	first	example	was	relatively	easy.	This	is	the	general	rule:	one
should	always	start	with	a	simple	example.	Maybe	some	application	developers	will	not
follow	the	atomic	approach	in	the	previous	example.	Although	some	of	them	could	follow
the	atomic	path,	maybe	not	being	aware	of	 the	 row	number	 function	 for	 example.	Let’s
increase	 the	 complexity	 and	 see	 more	 examples	 to	 illustrate	 the	 two	 styles	 of
programming.

We	 just	 saw	one	 facility	 that	works	with	 the	 set-based	approach:	 the	 row	number
function.	Apart	from	the	simple	copy	example,	one	other	requirement	was	to	dynamically
generate	an	artificial	identifier	for	the	key	in	the	target.	The	tendency	for	the	application
developer	is	clear.	A	lot	of	them	believe	that	they	need	to	manipulate	data	row-by-row	to
generate	the	artificial	identifier.	They	cannot	imagine	that	the	database	system	has	a	set	of
operators	and	functions	dedicated	to	set-based	approach	that	will	allow	them	to	avoid	the
row-by-row	data	manipulation.	The	only	thing	that	they	need	to	do	is	to	open	a	google	and
search	 for	 the	 available	 features	 in	 the	 database	 system	 they	 are	working	with.	 This	 is
what	they	are	doing	every!	Everything	is	available	now	in	the	Internet,	but	the	developers
need	to	be	aware	of	the	set-based	approach,	they	need	to	be	aware	that	there	are	a	variety
of	features	for	the	set	based	approach	that	will	help	them	working	holistically	and	avoid
the	row	division.

HOLISTIC	VERSUS	ATOMIC:
INCREMENTALLY	UPDATE	A	TARGET
I	continue	using	the	same	design.	We	are	 in	 the	same	data	migration	system	and	we	are
moving	data	from	a	production	system,	where	all	the	countries	and	languages	are	stored	in
one	 place,	 into	 a	 destination	 system	where	 the	 data	 is	 organized	 per	 language.	We	will
increase	 the	 complexity	 of	 the	 data	 transfer	 and	 we	 will	 assume	 that	 the	 data	 is	 not
completely	erased	before	 the	 transfer.	The	data	 transfer	will	be	 transferred	 incremental,
only	the	changes	will	be	applied	to	the	target.

Please	 look	 at	 the	 data	 to	 understand	 the	 exercise.	 Let’s	 assume	 we	 have	 three
changes	that	occurred	in	the	source	tables.	For	Malta,	the	English	language	is	becoming	a
secondary	 language	 instead	 of	 principal	 (MAIN),	 we	 completely	 delete	 the	 English
language	from	Switzerland	and	we	add	the	English	language	as	a	secondary	language	for
Austria.	We	also	add	a	new	country	Algeria,	a	new	language	Algerian	Arabic.	This	is	the
main	 language	 in	 Algeria	 and	 the	 French	 language	 is	 secondary.	 Therefore,	 there	 are
changes	 for	 both	 English	 and	 French	 languages,	 and	 these	 should	 be	 recorded
incrementally	now.

Code	example	10:	Change	the	sources

UPDATE	Countries_Languages

SET	Language_Category	=	‘SECONDARY’

WHERE	Country_Id	=	4	AND	Language_Id	=	2;

DELETE	Countries_Languages

WHERE	Country_Id	=	6	AND	Language_Id	=	2;

INSERT	INTO	Countries_Languages	(CL_Id,	Country_Id,	Language_	Id,	Language_Category)

VALUES	(14,	2,	2,	‘SECONDARY’);

INSERT	INTO	Languages	(Language_Id,	Language_Name)

VALUES	(7,	‘Algerian	Arabic’);

INSERT	INTO	Countries	(Country_Id,	Country_Code,	Country_	Name,	Continent)

VALUES	(10,	‘Ag’,	‘Algeria’,	‘Africa’);

INSERT	INTO	Countries_Languages	(CL_Id,	Country_Id,	Language_	Id,	Language_Category)

VALUES	(15,	10,	7,	‘MAIN’);

INSERT	INTO	Countries_Languages	(CL_Id,	Country_Id,	Language_	Id,	Language_Category)

VALUES	(16,	10,	3,	‘SECONDARY’);

Obviously,	 things	are	more	complicated	now!	We	will	not	simply	delete	the	target
table	 anymore,	 either	 English	 or	 French	 reporting	 table.	 We	 should	 try	 to	 keep	 the
reporting	tables	syncronized	with	the	source	tables	and	apply	the	changes.	More	than	that,
we	need	to	be	able	to	syncronize	deletions.	Whenever	we	have	a	deleted	country	from	the
sources	we	need	to	remove	it	from	the	reporting	table.	When	we	have	a	new	country	in	the
sources	we	need	to	add	it	in	the	target	and	when	we	are	changing	something	in	the	sources
we	need	to	update	the	information	in	the	target.	This	is	the	incremental	data	transfer,	our
second	example.

One	should	notice	the	business	key	apart	from	the	primary	key	in	the	source	table
Countries	Languages.	The	business	 key	 is	 composed	of	 the	 columns	Country	Code	 and
Language	Category.	The	role	of	the	artificial	key	is	just	for	unique	identification	and	the
role	for	the	unique	business	key	is	to	be	sure	that	any	unique	row	has	relevance	from	the
business	point	of	view.

One	country	may	have	one	category	at	a	time.	This	one	is	subject	 to	change,	as	it
happened	in	 the	Malta	case.	Based	on	 the	 language	category	we	can	detect	 the	changes,
using	either	the	atomic	approach	or	the	holistic	approach.	We	can	check	for	the	differences
one	 by	 one	 using	 the	 atomic	 approach	 or	 we	 can	 check	 for	 the	 differences	 for	 all	 the
countries	using	the	holistic	approach.

We	will	solve	this	exercise	by	deleting	the	non-synchronized	values	and	adding	the
list	of	new	values.	We	can	try	to	do	that	by	thinking	atomically	and	defining	two	cursors:
one	 for	 the	 deletions	 of	 English	 countries	 that	were	 changed	 in	 the	 source	 that	will	 be
applied	firstly	and	the	second	one	for	the	new	values.	This	should	be	the	atomic	approach.
We	imagine	one	separate	procedure	for	the	English	language.

Code	example	11:	Oracle	Atomic	Inc	transfer

CREATE	PROCEDURE	Atomic_Inc_Transfer_English

AS

v_Country_Name	VARCHAR	(50);

v_Country_Code	VARCHAR	(3);

v_Language_Category	VARCHAR	(10);

v_Next_EEC_Id	INT;

v_Count	INT;

CURSOR	c_Existing_Countries	IS

SELECT	Country_Code,	Language_Category

FROM	English_European_Countries;

CURSOR	c_New_Countries	IS

SELECT	c.Country_Name,	c.Country_Code,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries_1	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	‘English’;

BEGIN

OPEN	c_Existing_Countries;

LOOP

FETCH	c_Existing_Countries	INTO	v_Country_Code,	v_	Language_Category;

EXIT	WHEN	c_Existing_Countries%NOTFOUND;

SELECT	COUNT(1)	INTO	v_Count

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries_1	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	‘English’

AND	c.Country_Code	=	v_Country_Code

AND	cl.Language_Category	=	v_Language_Category;

IF	(v_Count	=	0)	THEN

DELETE	English_European_Countries

WHERE	Country_Code	=	v_Country_Code

AND	Language_Category	=	v_Language_Category;

END	IF;

COMMIT;

END	LOOP;

CLOSE	c_Existing_Countries;

OPEN	c_New_Countries;

LOOP

FETCH	c_New_Countries	INTO	v_Country_Name,	v_Country_	Code,	v_Language_Category;

EXIT	WHEN	c_New_Countries%NOTFOUND;

SELECT	COUNT	(1)	INTO	v_Count	FROM	English_European_Countries	eec

WHERE	NOT	EXISTS

(

SELECT	1

FROM	English_European_Countries	eec1

WHERE	eec1.English_CL_Id	=	eec.English_CL_Id	AND	eec1.	Country_Code	=	v_Country_Code

AND	eec1.Language_Category	=	v_Language_Category

);

IF	(v_Count	=	1)	THEN

SELECT	MAX	(English_CL_Id)	+	1	INTO	v_Next_EEC_Id	FROM	English_European_Countries;

INSERT	 INTO	 English_European_Countries	 (English_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

VALUES	(v_Next_EEC_Id,	v_Country_Code,	v_Country_Name,	v_	Language_Category);

END	IF;

COMMIT;

END	LOOP;

CLOSE	c_New_Countries;

END	Atomic_Inc_Transfer_English;

/

Please	 look	 and	 see	 the	way	 the	 problem	was	 solved	 in	 this	 example!	 The	 logic
looks	so	professional!	Let	us	analyze	it:

1.	 We	declare	two	cursors,	one	for	storing	the	countries	that	should	be	deleted	and
another	one	to	store	the	list	of	new	countries.

2.	 We	use	the	unique	business	key	composed	of	Country	Code	and	Language
Category	and	store	the	pair	in	two	variables,	row	by	row.	The	values	are	taken
from	the	target	table	English	European	countries.

3.	 We	check	in	the	source	system,	country	by	country	and	filter	per	the
combination	country	code	and	language	category,	for	the	English	language,	of
course.	We	calculate	the	count	and	add	it	in	a	dedicated	variable.

4.	 If	the	count	is	zero,	the	data	does	not	exist	in	the	source	system	anymore,	so	it
should	be	deleted	from	the	target	system.

5.	 Secondly,	we	are	opening	the	second	cursor	from	the	source	system.
6.	 We	store	the	required	information	in	the	dedicated	variables:	country	name,

code	and	the	category	of	the	language.
7.	 We	check	in	the	reporting	table	against	the	sources	to	see	if	we	have	new

countries.	We	rely	in	the	business	key	of	course.	We	calculate	another	count	to
see	if	we	have	something.

8.	 If	the	respective	count	is	one,	we	consider	the	country	as	new	and	we	add	it	to
the	reporting	table.

This	task	could	have	been	accomplished	in	different	ways	in	the	atomic	approach;
this	is	just	a	scenario	and	one	solution	to	the	problem.	The	important	aspect	here	is	to	see
the	 atomic	 approach	 in	 action,	 to	 see	 how	 somebody	 can	 solve	 things	 atomically.	 One

imagines	 everything	 per	 unit	 and	 programs	 everything	 row	 by	 row,	 in	 a	 clear	 atomic
vision,	 so	 dear	 to	 many	 application	 developers	 that	 are	 not	 used	 to	 think	 SQL	 and
holistically!

Let’s	see	the	SQL	Server	version	of	the	atomic	approach,	very	similar	to	the	Oracle
version,	 but	 still	 different	 due	 to	 the	 different	 nature	 of	 the	 programming	 language,
another	disadvantage	of	the	atomic	approach.

Using	 the	 atomic	 approach,	 which	 generally	 means	 using	 the	 procedural	 code,
requires	a	better	understanding	of	the	procedural	language.	The	logic	may	be	completely
different	when	using	the	atomic	approach	because	the	programming	languages	are	distinct,
even	if	quite	similar.

Code	example	12:	SQL	Server	Atomic	Inc	transfer

CREATE	PROCEDURE	Atomic_Inc_Transfer_Country

(

@p_Language_Name	VARCHAR	(50)

)

AS

DECLARE	@v_Country_Name	VARCHAR	(50);

DECLARE	@v_Country_Code	VARCHAR	(3);

DECLARE	@v_Language_Category	VARCHAR	(10);

DECLARE	@v_Next_EEC_Id	INT;

DECLARE	@v_Count	INT;

DECLARE	c_Get_New_Countries	CURSOR	FOR

SELECT	c.Country_Name,	c.Country_Code,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	UPPER	(l.Language_Name)	=	UPPER	(@p_Language_Name);

DECLARE	c_Get_Existing_E_Countries	CURSOR	FOR

SELECT	Country_Code,	Language_Category

FROM	English_European_Countries;

DECLARE	c_Get_Existing_F_Countries	CURSOR	FOR

SELECT	Country_Code,	Language_Category

FROM	French_European_Countries;

BEGIN

OPEN	c_Get_Existing_E_Countries;

FETCH	NEXT	FROM	c_Get_Countries	INTO	@v_Country_Code,	@v_	Language_Category;

WHILE	(@@FETCH_STATUS	=	0)

BEGIN

SET	@v_Count	=	(SELECT	COUNT	(1)

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	UPPER(l.Language_Name)	=	UPPER(@p_Language_Name)

AND	c.Country_Code	=	@v_Country_Code

AND	cl.Language_Category	=	@v_Language_Category

);

IF	(@v_Count	=	0)

BEGIN

DELETE	English_European_Countries

WHERE	Country_Code	=	@v_Country_Code	AND	Language_Category	=	@v_Language_Category;

END;

FETCH	NEXT	FROM	c_Get_Countries	INTO	@v_Country_Code,	@v_Language_Category;

END

CLOSE	c_Get_Existing_E_Countries;

DEALLOCATE	c_Get_Existing_E_Countries;

OPEN	c_Get_New_Countries

FETCH	 NEXT	 FROM	 c_Get_New_Countries	 INTO	 @v_Country_Name,	 @v_Country_Code,

@v_Language_Category;

WHILE	(@@FETCH_STATUS	=	0)

BEGIN

SELECT	@v_Count	=	COUNT	(1)

FROM	English_European_Countries	eec

WHERE	NOT	EXISTS

(

SELECT	1

FROM	English_European_Countries	eec1

WHERE	eec1.English_CL_Id	=	eec.English_CL_Id

AND	eec1.Country_Code	=	@v_Country_Code

AND	eec1.Language_Category	=	@v_Language_Category

);

IF	(@v_Count	=	1)

BEGIN

SET	 @v_Next_EEC_Id	 =	 (SELECT	 MAX	 (English_CL_Id)	 +	 1	 FROM

English_European_Countries);

INSERT	INTO	English_European_Countries	(English_CL_Id,	Country_Code,	Country_Name,

Language_Category)

VALUES	(@v_Next_EEC_Id,	@v_Country_Code,	@v_Country_Name,	@v_Language_Category);

END;

FETCH	NEXT	FROM	c_Get_New_Countries	INTO	@v_Country_Name,

@v_Country_Code,	@v_Language_Category;

END

CLOSE	c_Get_New_Countries;

DEALLOCATE	c_Get_New_Countries;

END;

GO

Now	an	application	developer	working	in	SQL	Server	is	extremely	happy!	He	did
not	 understand	 PL	 SQL	 but	 he	 understands	 Transact	 SQL!	Working	 in	 this	 style	 in	 the
database	 may	 transform,	 indeed,	 the	 developer	 in	 a	 specialized	 developer	 in	 a	 certain
language.	He	will	not	gain	the	benefits	of	the	standard	and	he	will	restrict	himself	to	that
particular	language.	Is	the	programmer	choice,	after	all!

Still,	even	so,	if	you	take	a	closer	look	you	will	see	a	lot	of	similarities.	Things	are
similar	and	different,	if	we	want	to	conclude.	Nevertheless,	working	holistically	things	are
just	similar,	not	so	different…

Comparing	 the	 two	 stored	 procedures,	 Oracle	 and	 SQL	 Server	 versions,	 you	 can
still	see	almost	the	same	steps.	Still,	the	while	is	a	loop,	the	cursor	is	a	cursor,	the	variable
is	 a	 variable	with	 or	without	 the“@”	 sign,	 the	 fetch	 is	 a	 fetch,	 the	 “if”	 statement	 is	 the

same	statement.	In	the	end,	it	is	not	difficult	to	write	in	one	system	or	another,	things	are
similar.	However,	 the	portability	is	not	 the	main	problem:	 that	 is	 the	 last	problem	in	 the
agenda!	The	performance	and	the	clarity	of	the	code	are	my	problems!

The	holistic	approach	for	this	example	is	much	simpler.	We	don’t	need	anything	like
cursors	or	variables	here,	all	we	need	is	to	think	holistically	and	understand	that	we	have	a
set	of	data	to	affect	with	two	actions.

Let’s	see	the	SQL	Server	version	for	the	holistic	approach:
Code	example	13:	SQL	Server	Holistic	Inc	transfer

CREATE	PROCEDURE	Holistic_Inc_Transfer_Country

(

@p_Language_Name	VARCHAR	(50)

)

AS

BEGIN

DELETE	English_European_Countries

FROM	English_European_Countries	eec

WHERE	NOT	EXISTS

(

SELECT	1

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	UPPER	(l.Language_Name)	=	UPPER	(@p_Language_Name)

AND	eec.Country_Code	=	c.Country_Code

AND	eec.Language_Category	=	cl.Language_Category

);

INSERT	 INTO	 English_European_Countries	 (English_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	(SELECT	MAX	(English_CL_Id)	AS	Max_English_CL_Id

FROM	English_European_Countries)	+	ROW_NUMBER()	OVER	(ORDER

BY	c.Country_Code,	cl.Language_Category)	AS	English_CL_Id,	c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	UPPER	(l.Language_Name)	=	UPPER	(@p_Language_Name)

AND	NOT	EXISTS

(

SELECT	1	FROM	English_European_Countries	eec

WHERE	eec.Language_Category	=	cl.Language_Category

AND	eec.Country_Code	=	c.Country_Code

);

END;

GO

Let’s	see	the	steps:

1.	 First,	we	need	to	delete	the	countries	from	the	reporting	table	that	are	not

conform	to	the	business	key	and	were	eliminated	from	the	set	of	source	tables.
We	have	all	the	items	that	need	to	be	removed	in	a	single	select	statement.	We
can	simply	try	to	identify	the	rows	to	be	removed	in	a	simple	select	statement
and	then	we	will	transform	this	in	a	delete	statement.

2.	 Secondly,	we	need	to	add	the	new	English	European	countries	that	do	not	exist
in	the	reporting	target	table.	We	can	simply	generate	an	artificial	key	for	the
reporting	key	in	the	select	statement	using	different	SQL	features.

Now	we	can	compare	 the	 two	approaches.	We	have	one	delete	 statement	and	one
insert	 statement,	 that’s	 all	we	have!	First,	we	might	need	 to	 check	a	 select	 statement	 to
identify	the	data	that	needs	to	be	deleted,	if	we	can	afford	to.

Let’s	 assume	we	 tested	 the	data	before.	We	eventually	 look	at	 the	data	and	 try	 to
understand	the	nature.	We	look	to	see	if	what	we	have	is	indeed	what	needs	to	be	deleted
and,	afterwards,	we	transform	this	select	statement	into	a	delete	statement.

We	think	in	these	terms.	I	have	some	countries	in	the	reporting	table	with	European
countries	 that	may	be	obsolete	due	to	some	changes	in	the	source	tables.	Let’s	see	these
countries	first!	We	have	a	set	of	countries,	one	single	data	set!	I	don’t	care	and	I	don’t	see
any	reason	to	take	country	by	country,	I	have	a	list	of	countries,	a	set	of	rows,	and	I	want
to	identify	this	list.	This	list,	once	correctly	identified,	I	take	it	and	use	it	for	the	deletion.
In	 the	 logic,	 I	have	one	delete	statement.	 In	reality,	we	always	 think	the	delete	action	in
two	steps.	I	have	a	set	of	rows,	I	identify	it	and	I	change	it	into	a	delete.

Secondly,	and	similarly,	I	have	another	set	of	countries	that	needs	to	be	added	in	the
reporting	table.	I	take	the	select	statement	and	make	sure	I	identify	the	correct	set	of	new
countries.	I	find	a	way	to	dynamically	generate	new	artificial	identifiers	for	the	key	in	the
reporting	table.	I	don’t	have	any	reason	to	move	the	logic	at	the	atomic	level.

Let’s	analyze	the	Oracle	 logic	 in	 the	holistic	approach	and	compare	with	 the	SQL
Server	 logic.	We	will	be	amazed	 to	see	how	similar	 the	 logic	 is.	Actually	 if	we	weren’t
inside	 a	 stored	 procedure	 and	we	would	 have	 executed	 everything	 in	 a	 SQL	 editor,	we
could	 copy	 the	 entire	 piece	 of	 code	 from	Oracle	 and	 execute	 it	 in	 SQL	 Server	 or	 vice
versa.	 So,	 before	 continuing,	 based	 on	 these	 two	 examples,	 let’s	 compare	 the	 atomic
approach	with	the	holistic	approach.

Look	at	the	Oracle	version.
Code	example	14:	Oracle	Holistic	Inc	transfer

CREATE	PROCEDURE	Holistic_Inc_Transfer_Country

(

p_Language_Name	VARCHAR

)

AS

BEGIN

DELETE	FROM	English_European_Countries	eec

WHERE	NOT	EXISTS

(

SELECT	1

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	UPPER	(l.Language_Name)	=	UPPER	(p_Language_Name)

AND	eec.Country_Code	=	c.Country_Code

AND	eec.Language_Category	=	cl.Language_Category

);

INSERT	INTO	English_European_Countries	(English_CL_Id,

Country_Code,	Country_Name,	Language_Category)

SELECT	(SELECT	MAX	(English_CL_Id)	AS	Max_English_CL_Id

FROM	 English_European_Countries)	 +	 ROW_NUMBER()	 OVER	 (ORDER	 BY	 c.Country_Code,

cl.Language_Category)	AS	English_CL_Id,	c.Country_Code,	c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	UPPER	(l.Language_Name)	=	UPPER	(p_Language_Name)

AND	NOT	EXISTS

(

SELECT	1	FROM	English_European_Countries	eec

WHERE	eec.Language_Category	=	cl.Language_Category

AND	eec.Country_Code	=	c.Country_Code

);

END	Holistic_Inc_Transfer_Country;

/

Let’s	conclude	this	chapter.	We	just	analyzed	two	simple	examples	of	data	transfer.
The	data	 transfer,	 the	 copy	process	 from	a	 source	 to	 a	destination,	 is	 the	most	 common
type	of	task	for	the	programmer	when	writing	inside	the	database.	The	data	is	transferred
from	various	sources	to	various	targets	and	this	is	common	in	almost	any	software	system.
According	 to	 our	 examples,	we	 firstly	 transfer	 the	 data	 in	 a	 simple	 full	 approach.	 That
means	the	data	was	completely	deleted	first	and	replaced	with	the	data	from	the	sources.
The	second	exercise	 increases	 the	complexity	and	 the	data	 in	 the	 target	was	not	deleted
first.	The	data	was	incrementally	updated,	only	the	changes	were	applied	to	the	target.	In
both	scenarios,	the	artificial	identifier	in	the	target	needed	to	be	dynamically	generated.

This	data	transfer	problem	can	be	solved	in	both	ways	according	to	the	two	visions
and	styles	of	development.	The	application	developer	will	be	tempted	to	open	a	cursor	and
to	move	the	context	and	the	transfer	at	the	row	level.	Because	he	is	not	fully	aware	of	the
fact	that	he	is	in	a	database	where	the	data	is	affected	in	data	sets	and	he	knows	just	the
principles	 of	 structure	 programming,	 he	 imagines	 he	 can	 transfer	 everything	 at	 the	 row
level.	He	transforms	the	logic,	using	the	cursors,	in	row-oriented	logic,	he	sees	everything
in	his	variables	and	he	can	work	almost	like	in	the	use	interface.	The	database	developer	is
aware	of	the	data	set,	he	knows	that	the	data	should	be	handled	in	data	sets	and	he	always
tries	to	identify	it	and	affect	the	data	set	as	a	whole,	in	a	holistic	manner.	He	knows	that
there	 are	 many	 set	 based	 facilities	 in	 every	 database	 system	 for	 various	 things.	 For
example,	he	uses	the	row	number	function	to	generate	the	identifier,	and	this	function	is
applied	 per	 the	 entire	 data	 set.	 His	 logic	 is	 much	 simpler,	 is	 much	 condensed,	 is	 set-
oriented,	it	has	a	much	better	performance,	is	portable	because	SQL	is	a	standard	and	the
logic	 is	 almost	 the	 same	 in	 any	database	 system.	The	 transfer	occurs	 at	 the	 level	of	 the

entire	data	set	and	this	requires	a	certain	style	of	development	that	is	not	very	similar	with
the	style	in	the	user	interface,	maybe	is	not	so	attractive	for	some	programmers,	but	it	is
efficient	and	it	is	what	it	should	be	in	a	relational	database.

T

Chapter	6

OTHERS	ATOMIC	FEATURES	USED	IN	EXCESS
THE	USE	OF	SCALAR	FUNCTIONS	–	A	CHALLENGE	TO	THE	SET-
BASED	APPROACH

he	cursor	is	the	main	facility	that	allows	the	application	developer	to	move	the	entire
context	 at	 the	 row	 level.	 From	my	 point	 of	 view,	 when	 teaching	 the	 applications

developers	 to	 work	 in	 the	 database,	 I	 would	 completely	 remove	 the	 cursors	 from	 their
work	agenda	and	forbid	them	to	use	them	until	they	learn	and	understand	the	concept	of
data	set.	I	would	also	remove	the	loop	feature	from	their	development	activity	and	don’t
allow	them	to	loop	under	any	circumstances.	Cursors	with	loops	are	the	favorite	tools	for
many	application	programmers	who	are	 tempted	 to	use	 them	continuously	because	 they
permit	them	to	handle	things	atomically	and	they	let	 them	focus	on	their	favorite	classic
paradigm	outside	a	real	database.	Unfortunately,	for	them	they	are	inside	a	database	and,
despite	their	desires	and	preferences,	they	should	become	aware	of	the	difference.

What	is	unfair	is	the	fact	that	the	cursor	is	a	great	feature	and	it	allows	us	to	solve
many	problems	 in	 the	 atomic	 style	when	 the	 holistic	 style	 is	 not	 satisfactory.	There	 are
many	situations	when	we	need	them	and	when	the	data	set	cannot	be	handled	as	a	whole
and	 consequently	 we	 are	 forced	 to	 move	 the	 context	 from	 data	 set	 to	 the	 row	 level.
Consequently,	no	one	should	assume	that	I	reject	cursors.	On	the	contrary,	I	believe	that
the	cursor	is	a	great	feature	by	itself;	the	abuse	of	cursors	is	a	disaster.

To	be	honest,	I	like	working	with	cursors!	It	is	so	interesting	and	challenging!	The
steps	are	very	clear.	Moreover,	even	here	we	start	with	the	concept	of	data	set	because	the
cursor	 declaration	 is	 a	 data	 set.	 Declaring	 the	 cursor,	 opening	 it,	 moving	 intermediates
columns	or	expressions	from	the	cursor	data	set	into	the	layer	of	variables,	move	through
the	 loop	 from	 one	 row	 to	 another	 and	 do	 various	 manipulations,	 all	 these	 actions	 are
challenging	and	exciting	and	first	time	I	learned	this	feature	I	was	very	happy!

Like	anybody	else	 involved	 in	 this	kind	of	business,	many	of	 the	 ideas	developed
here	have	been	understood	and	clarified	in	time.	Even	now,	while	I	am	writing	I	continue
to	 discover	 new	 things	 and	 to	 reveal	 and	 clarify	 another	 or	 myself	 in	 one	 matter.	 For
example,	 the	 cursors	 and	 their	 mechanism	 are	 fascinating	 sometimes.	 Especially	 when
trees	 are	 involved	 is	 so	 difficult	 to	 handle	 the	 logic	 and	 you	 need	 to	 use	 cursors,
sometimes	combine	many	cursors	until	you	get	the	proper	results.	The	use	of	cursors	is	a
perfect	feature	for	the	atomic	approach.	It	allows	us	to	change	the	context	from	the	data
set	 to	data	row.	The	atomic	approach	itself	 is	mandatory	and	critical	and	we	cannot	 live
without	 it.	 Only	 that	 should	 not	 be	 used	 as	 the	 default	 solution	 because	 is	 a	 backup
solution.	That	is	the	difference.	The	atomic	approach	should	be	seen	as	a	backup	solution
for	the	holistic	approach	within	a	relational	database.	It	is	similar	to	the	use	of	antibiotics;
no	one	can	say	that	the	antibiotics	are	bad	-	they	add	many	years	to	the	average	lifespan
for	most	of	us.	However,	the	use	in	excess	of	antibiotics	is	a	bad	practice	and	the	doctors
recommend	avoiding	 the	use	of	antibiotics	unless	 they	are	necessary.	The	same	way	 the
excessive	use	of	antibiotics	will	damage	the	body	in	time,	the	use	of	atomic	approach	will

damage	the	databases	in	time.

The	end	users	and	the	customers	using	the	software	applications	are	mainly	focused
on	the	accuracy	of	the	results	and	they	accept	a	bad	performance	as	long	as	it	is	not	lousy.
The	 fact	 that	most	 of	 the	developers	 are	 application	developers	within	 the	mixed	 teams
and	they	are	familiarized	with	the	atomic	approach,	contribute	to	a	software	world	where	a
lot	of	databases	are	built	using	the	atomic	style	of	development.

The	application	developer	is	a	great	fan	of	the	cursors	for	another	reason	too.	As	we
all	know,	one	of	 the	most	 important	 feature	for	an	application	developer	 is	 the	function.
The	application	developer	 loves	 functions	and	he	 is	 tempted	 to	use	 them	as	much	as	he
can.	The	combination	between	cursors,	movement	into	variables	and	loops	is	perfect	for
an	 atomic	 style.	 In	 specific	 programming	 languages	 like	 PL	 SQL	 or	 Transact	 SQL	 or
anything	 else,	 these	 functions,	 suitable	 for	 an	 atomic	 approach,	 are	 named	 scalar
functions.	 A	 scalar	 function	 returns	 a	 certain	 value	 of	 a	 certain	 type	 like	 a	 string	 or
number.	The	scalar	functions	are	very	suitable	for	the	atomic	approach	because	they	can
be	applied	per	variables	within	loops	and	cursors.	Similarly	with	stored	procedures,	if	the
application	developer	sees	a	store	procedure	like	a	scalar	function	returning	a	void	he	can
understand	that	a	stored	procedure	should	be	defined	to	act	in	one	expression	or	value	and
this	action	can	be	executed	atomically	within	a	loop	in	a	cursor.

So	what	are	the	connections	between	the	cursor,	the	scalar	function	and	the	atomic
approach?	Well,	it	is	very	easy	to	point	out.	They	are	all	related.	The	cursor	and	the	loop
allow	 us	 to	 go	 down	 from	 the	 data	 set	 to	 the	 data	 row.	 The	 scalar	 function	 accepts
variables	as	parameters,	it	returns	discrete	values,	and	is	a	type	of	function	that	is	executed
per	row.	The	scalar	function	is	a	row	function;	it	is	exactly	what	the	application	developer
needs	to	be	able	to	move	the	context	of	development	from	the	data	set	to	the	row.	When	I
say	to	move	the	context	from	the	data	set	to	the	data	row,	I	don’t	mean	that	the	application
developer	is	necessarily	aware	of	the	context	switch.	In	most	of	the	cases,	he	is	not	aware
of	any	data	set	and	he	is	going	down	to	the	row	level	by	instinct,	automatically.

The	principle	of	structured	programming	teaches	us	 to	create	functions	and	 to	use
them	to	divide	the	logic	into	smaller	pieces.	One	of	the	first	things	the	student	learns	in	the
University	is	the	use	of	functions.	He	learns	to	create	functions;	he	learns	that	the	function
will	return	something,	in	most	of	the	cases	and	he	learns	to	add	parameters	to	the	functions
and	recall	 them	later	 in	his	 logic.	When	one	starts	 to	work	 in	 the	database,	and	sees	 the
scalar	functions,	he	makes	the	connection	right	away,	with	what	he	knows	from	his	classic
programming	and	he	is	happy:	he	found	his	favorite	toy	and	he	is	glad	he	can	use	it	in	the
database!

Of	course,	those	functions	are	useful	in	the	database	too.	More	than	that,	we	should
know	that	not	all	the	functions	are	scalar,	per	row.	There	are	set-based	functions	like	table
functions,	 for	 example.	 There	 are	 alternatives	 in	 almost	 any	 database	 programming
language.	 The	 function	 can	 be	 applied	 to	 a	 data	 set	 and	 it	 can	 return	 a	 data	 set.	 The
function	can	be	used	holistically.	Unfortunately,	nothing	compares	to	scalar	functions	for
an	 application	 developer	 because	 those	 remind	 him	 of	 what	 he	 knows	 from	 the	 user
interface.	He	is	tempted	to	use	scalar	functions	in	excess,	he	combines	these	in	cursors	and
loops	and	he	imposes	his	atomic	style	in	the	database.

One	of	 the	most	 important	principles	 in	 structured	programming	 is	 the	 following:
divide	 complex	 problems	 into	 simpler	 ones	 by	 using	 functions	 or	 procedures.	 This	 is	 a
great	principle	and	it	is	followed	in	database	programming	too.	That	doesn’t	mean,	in	the
name	 of	 that	 principle,	 to	 divide	 the	 problem	 at	 the	 data	 row	 level	 instead	 of	 trying	 to
solve	 it	 at	 the	data	 set	 level.	Solving	 the	problems	at	 the	data	 set	 level,	 as	 I	 consider	 it
should	 be	 in	 database	 programming,	 it	 may	 generate	 a	 smaller	 number	 of	 routines	 as
secondary	consequence.	However,	this	is	not	a	tragedy.	This	principle	is	not	valuable	by
itself	 but	 for	 the	 benefits,	 it	 brings	 to	 the	 software	 application.	 We	 are	 not	 in	 Ethics,
Metaphysics	 or	 even	 in	 a	 science	 like	Geometry	where	 principles	 are	 categorically	 and
should	be	respected	under	any	circumstances	and	regardless	of	any	consequences.	We	are
in	 the	 practical	world	 of	 software	 development	 and	we	 are	 in	 the	 database.	 The	 use	 of
functions	 is	 different	 here	 than	 in	 the	 user	 interface	 and	 the	 holistic	 approach	 generally
means	less	and	different	routines,	especially	in	the	specific	systems	like	a	data	migration
interface	between	a	system	A	and	a	system	B.

If	 we	 look	 at	 the	 types	 of	 available	 functions,	 we	 can	 see	 that	 every	 database
programming	 language	 has	 many	 types	 of	 functions.	 In	 SQL	 Server,	 there	 are	 table
functions;	some	kinds	of	functions	that	will	return	a	set	of	values	in	the	form	of	an	object
called	table	variable.	Similarly,	there	is	the	possibility	to	return	some	complex	types	in	PL
SQL	 like	 arrays	 or	 collections.	 This	 shows	 that	 all	 the	 database	 engines	 and	 their
associated	programming	languages	offer	the	option	to	use	functions	in	a	holistic	approach.
Some	of	these	functions	may	be	required	and	may	be	used.	Very	often	though,	the	use	of
functions	causes	a	bad	performance	and	normally	these	should	be	generally	avoided.

Especially	the	scalar	functions	are	part	of	a	serious	performance	issue	if	applied	to
large	data	sets	inside	cursors.	This	is	a	common	practice	for	a	lot	of	application	developers
that	are	coming	and	try	to	apply	the	style	they	are	familiarized	with	in	the	database.	Let’s
imagine	one	set	of	values	with	some	thousands	of	rows	and	you	create	a	function	and	call
that	function	in	a	cursor	some	thousands	times.	As	an	alternative,	you	can	manipulate	the
entire	 data	 set	 using	 some	 simple	 SQL	 statements.	 This	 is	 something	 that	 is	 happening
very	often	in	these	kinds	of	applications	that	should	be	set-oriented	but	are	row-oriented.
One	 of	 the	 rules	 I	 would	 state	 in	 these	 kinds	 of	 applications	 is	 this	 one:	 use	 scalar
functions	 for	 system	 settings,	 if	 you	 want	 to	 identify	 one	 setting	 or	 another	 in	 some
configuration	tables.	Do	not	use	scalar	functions	for	operation	that	involve	data	sets,	try	to
avoid	and	to	solve	the	problem	at	the	level	of	the	data	set.

Try	to	identify	the	level	of	granularity	required	by	your	software	application	and,	if
is	a	set-oriented	application,	 try	 to	 forget	about	scalar	 functions.	 In	most	of	 times,	 these
will	not	be	used	because	these	functions	apply	to	details	and	require	the	atomic	level.

Still,	 when	 should	 we	 use	 scalar	 functions?	 There	 is	 one	 situation	 when	 scalar
functions	are	excellent	in	the	database.	Let’s	see	a	query,	of	a	certain	type.	Let’s	define	the
concept	of	scalar	query,	by	analogy	with	a	scalar	function.	A	scalar	query	is	that	type	of
query	 that	 returns	one	single	value	of	a	certain	 type,	 like	a	string	value	or	numeric	one.
Sometimes	we	should	know	that.

Very	often,	configuration	tables	are	suitable	for	scalar	queries	if	these	will	read	from
the	configuration	 tables.	The	scalar	queries	are	 ideal	 for	 scalar	 functions	and,	especially
for	configurations	tables,	are	excellent	and	should	be	used	intensively	in	the	database.

EXAMPLE:	FILTER	ENGLISH	OR	FRENCH	EUROPEAN
COUNTRIES,	ONLY	FOR	FLAGGED	AND	MAIN	COUNTRIES.

Let’s	 see	 one	 more	 example,	 a	 more	 complex	 scenario	 for	 the	 Practice	 1,	 a	 full	 data
transfer	between	 two	systems.	The	same	design	applies	but	 the	conditions	for	 the	report
table	generation	are	not	so	simple	anymore.	The	business	and	technical	requirement	may
look	like	this,	and	now	I	realize	that	we	can	influence	the	solution,	atomic	or	holistic,	even
while	describing	the	problem	from	the	beginning.

The	Business	(technical)	request:

We	 need	 to	 generate	 the	 same	 report	 table,	 in	 the	 full	 approach	 like	 in	 the	 previous
chapter	with	 one	 difference.	 The	 data	 should	 be	 generated	 from	 the	 set	 of	 three	 source
tables	into	the	target-reporting	table,	either	English	or	French,	under	certain	conditions.
If	the	language	is	the	principal	language	or	main,	we	need	to	check	for	the	flag.	If	the	flag
is	 set	 to	 a	 positive	 value	 like	 one,	 then	 we	 will	 generate	 the	 English	 or	 French	 set	 of
countries	into	the	table.

We	 can	 already	 see	 from	 the	 business	 presentation	 of	 the	 request	 the	 structured,
atomic	vision	and	we	can	already	anticipate	 the	 solution.	To	me,	 this	 solution	 seems	 so
complicated,	 so	 difficult	 that	 I	 barely	 stop	 myself	 from	 laughing	 with	 tears!	 The
application	developer,	the	true	application	developer	will	decide	to	follow	his	dear	classic
structured	philosophy,	completely	atomic	and	procedural.	He	likes	functions	so	he	is	ready
to	build	some	nice	and	cozy	functions,	scalar	of	course.	One	may	notice	that	the	business
(technical)	description	is	clearly	written	in	the	atomic	style.	The	problem	has	been	defined
atomically	before	any	line	of	code	was	written	anywhere!

The	application	developer	will	see	things	per	business	key,	the	combination	between
language	and	country.	If	one	looks	at	the	design	of	the	table,	he	may	see	the	business	key
composed	 from	 a	 language	 and	 a	 country	 corresponding	 to	 the	 unique	 constraint
UQ_Language_Country.	This	 is	 the	key	for	his	atomic	approach	because	 the	application
developer	knows	that	he	can	have	one	set	of	attributes	or	characteristics	per	country	and
language.	 Therefore,	 his	 functions	will	 be	 oriented	 per	 language	 and	 country	 and	 these
fields	will	be	the	parameters	for	his	scalar	functions.

The	first	function	will	return	the	category	of	the	language	for	the	respective	country.
The	category	can	be	either	principal	(MAIN)	or	secondary	(SECONDARY).	This	function
is	 a	 get	 function,	 of	 course,	 and	 the	 function	 is	 get_category.	 The	 second	 function	will
return	 the	 flag	 (make_flag)	 for	 the	 same	 combination	 of	 language	 and	 country,	 the
function	will	be,	guess	how:	get_flag.	Let’s	see	the	nice	scalar	functions!

Code	example	15:	SQL	Server	get	scalar	functions

CREATE	FUNCTION	get_category

(

@p_language_id	INT,

@p_country_id	INT

)

RETURNS	VARCHAR(10)

BEGIN

DECLARE	@v_category	VARCHAR(10);

DECLARE	@v_count	INT;

SELECT	@v_count	=	COUNT(*)	FROM	countries_languages

WHERE	language_id	=	@p_language_id

AND	country_id	=	@p_country_id;

IF	@v_count	=	0

SET	@v_category	=	NULL

ELSE

SELECT	@v_category	=	Language_Category	FROM	countries_languages

WHERE	language_id	=	@p_language_id

AND	country_id	=	@p_country_id;

RETURN	@v_category;

END

GO

CREATE	FUNCTION	get_flag

(

@p_language_id	INT,

@p_country_id	INT

)

RETURNS	INT

BEGIN

DECLARE	@v_make_flag	INT

DECLARE	@v_count	INT

SELECT	@v_count	=	COUNT(*)	FROM	countries_languages

WHERE	language_id	=	@p_language_id

AND	country_id	=	@p_country_id;

IF	@v_count	=	0

SET	@v_make_fllag	=	NULL

ELSE

SELECT	@v_make_fllag	=	Make_Flag

FROM	countries_languages

WHERE	language_id	=	@p_language_id

AND	country_id	=	@p_country_id;

RETURN	@v_make_fllag;

END

GO

These	functions	will	specify,	for	each	language	and	country,	 the	value	for	 the	flag
and	category,	main	or	secondary.	These	functions	will	allow	the	developer	to	identify	the
conditions	 specified	 in	 the	 text	 (see	 the	 business	 requirement).	 The	 assumption	 when
building	 these	 functions	 is	 clearly	 atomic	 and	 procedural,	 the	 programmer	 already	 sees
one	country	and	one	language:	he	sees	himself	as	a	rider	on	the	row!	Unfortunately,	the
row	is	not	a	horse	but	a	donkey!

The	 house	 for	 the	 scalar	 functions	 will	 be	 the	 cursor,	 of	 course.	 Now,	 when	 the
developer	 is	 ready	 for	 the	 final	 call,	 he	will	 use	 a	 similar	 logic	 as	 the	 one	 in	 previous
chapter,	but	now	will	be	even	better	because	he	can	use	his	dear	scalar	functions	and	call
them	in	in	the	cursor,	so	the	database	will	be	the	mirror	of	what	he	knows	from	his	classic
development.	Let’s	see	the	atomic	style	for	the	SQL	Server.

Code	example	16:	SQL	Server	Atomic	Inc	transfer	with	functions

CREATE	PROCEDURE	Atomic_Transfer_Country_Flag

(

@p_Language_Name	VARCHAR	(50)

)

AS

DECLARE	@v_Country_Name	VARCHAR	(50),

@v_Country_Code	VARCHAR	(3);

DECLARE	@v_Language_Category	VARCHAR	(10),

@v_New_EEC_Id	INT;

DECLARE	@v_Country_Id	INT,	@v_Language_Id	INT,

@v_Make_Flag	INT;

DECLARE	c_Get_Countries_Lang	CURSOR	FOR

SELECT	Country_Id,	Language_Id

FROM	Countries_Languages

WHERE	Language_Id	IN	(SELECT	Language_Id	FROM	Languages

WHERE	Language_Name	=	@p_Language_Name);

BEGIN

SET	@v_New_EEC_Id	=	1;

IF	@p_Language_Name	=	‘English’

DELETE	English_European_Countries;

ELSE	IF	@p_Language_Name	=	‘French’

DELETE	French_European_Countries;

OPEN	c_Get_Countries_Lang

FETCH	NEXT	FROM	c_Get_Countries_Lang

INTO	@v_Country_Id,	@v_Language_Id;

WHILE	(@@FETCH_STATUS	=	0)

BEGIN

SET	@v_Language_Category	=	dbo.get_category(@v_Language_	Id,	@v_Country_Id);

IF	@v_Language_Category	=	‘MAIN’

BEGIN

SET	@v_Make_Flag	=	dbo.get_flag	(@v_Language_Id,	@v_	Country_Id);

IF	@v_Make_Flag	=	1

BEGIN

SELECT	 @v_Country_Name	 =	 Country_Name,	 @v_Country_Code	 =	 Country_Code	 FROM

countries

WHERE	Country_Id	=	@v_Country_Id;

IF	@p_Language_Name	=	‘English’

INSERT	INTO	English_European_Countries	(English_	CL_Id,	Country_Code,

Country_Name,	Language_Category)

VALUES	 (@v_New_EEC_Id,	 @v_Country_Code,	 @v_Country_	 Name,

@v_Language_Category);

ELSE	IF	@p_Language_Name	=	‘French’

INSERT	 INTO	 French_European_Countries	 (French_CL_	 Id,	 Country_Code,

Country_Name,	Language_Category)

VALUES	 (@v_New_EEC_Id,	 @v_Country_Code,	 @v_Country_	 Name,

@v_Language_Category);

SET	@v_New_EEC_Id	=	@v_New_EEC_Id	+	1;

END

END

FETCH	NEXT	FROM	c_Get_Countries_Lang	INTO	@v_Country_Id,	@v_Language_Id;

END

CLOSE	c_Get_Countries_Lang;

DEALLOCATE	c_Get_Countries_Lang;

END;

GO

Let’s	take	a	deep	breath	and	let’s	analyze	this	logic,	written	in	a	very	classic	style
and	in	full	compliance	with	the	business	description	of	the	problem.	The	business	analyst
that	describes	the	problem	was	already	under	the	influence	of	the	atomic	approach.	This	is
not	 an	 excuse	 for	 the	developer	because	he	 can	use	his	 own	mind	 and	he	 can	 correctly
interpret	the	statements.

The	steps	are:

1.	 Declare	the	cursor	with	all	the	combinations	language	country.	Open	it.	Fetch
the	identifiers	for	both	country	and	language.	These	will	be	used	as	parameters
for	the	scalar	functions.

2.	 Initialize	the	value	for	the	artificial	identifier.
3.	 Delete	the	reporting	table,	either	English	or	French.
4.	 Calculate	the	category	for	the	language	and	country,	using	the	function

get_category.	The	parameters	are	taken	from	the	variables	generated	from	the
cursor.

5.	 If	the	category	is	MAIN,	continue	the	logic	in	the	most	pure	procedural	style
and	calculate	the	flag	using	the	second	function,	get_fag.

6.	 If	the	flag	is	positive	(value	1)	generate	the	data	in	the	reporting	table.
7.	 You	can	see	after	the	execution	two	countries	Malta	and	New	Zealand	for

English	European	countries	and	Canada	for	French	European	countries.

Let’s	see	the	logic	in	Oracle,	and	start	with	the	functions.	As	you	can	see,	things	are
similar;	of	course,	the	procedural	syntax	differs	but	not	so	much	to	affirm	that	it’s	difficult
to	accommodate	one	from	the	other.

Code	example	17:	Oracle	get	scalar	functions

CREATE	OR	REPLACE	FUNCTION	get_category

(

p_language_id	INT,

p_country_id	INT

)

RETURN	VARCHAR2

AS

v_category	VARCHAR2(10);

v_count	INT;

BEGIN

SELECT	COUNT(*)	INTO	v_count	FROM	countries_languages

WHERE	language_id	=	p_language_id

AND	country_id	=	p_country_id;

IF	v_count	=	0	THEN

v_category	:=	NULL;

ELSE

SELECT	Language_Category	INTO	v_category

FROM	countries_languages

WHERE	language_id	=	p_language_id

AND	country_id	=	p_country_id;

END	IF;

RETURN	v_category;

END;

/

CREATE	FUNCTION	get_fllag

(

p_language_id	INT,

p_country_id	INT

)

RETURN	INT

AS

v_make_fllag	INT;

v_count	INT;

BEGIN

SELECT	COUNT(*)	INTO	v_count	FROM	countries_languages

WHERE	language_id	=	p_language_id

AND	country_id	=	p_country_id;

IF	v_count	=	0	THEN

v_make_flag	:=	NULL;

ELSE

SELECT	Make_Flag	INTO	v_make_fllag

FROM	countries_languages

WHERE	language_id	=	p_language_id

AND	country_id	=	p_country_id;

END	IF;

RETURN	v_make_flag;

END;

/

You	may	 see	 a	 similar	 style	 in	 any	 system,	 a	 similar	 logic,	 similar	 characteristics
and	 features.	The	programmer	uses	 the	 same	atomic	style,	 the	 same	mind	and	 the	 same
confusions	 old	 habits	 that	 cannot	 be	 changed,	 despite	 the	 necessities.	 Hello	 my	 dear
developers:	wake	up!	We	are	 in	 the	database,	we	are	 in	a	 relational	database,	and	 it	 is	a
different	world.	Let’s	see	how	the	Oracle	or	PL	SQL	developer	ends	his	logic	in	triumph!

Code	example	18:	Oracle	atomic	transfer

CREATE	OR	REPLACE	PROCEDURE	Atomic_Transfer_Country_Flag

(

p_Language_Name	VARCHAR

)

AS

v_Country_Name	VARCHAR	(50);

v_Country_Code	VARCHAR	(3);

v_Language_Category	VARCHAR	(10);

v_New_EEC_Id	INT;

v_Country_Id	INT;

v_Language_Id	INT;

v_Make_Flag	INT;

CURSOR	c_Get_Countries_Lang	IS

SELECT	Country_Id,	Language_Id

FROM	Countries_Languages

WHERE	Language_Id	IN	(SELECT	Language_Id	FROM	Languages

WHERE	Language_Name	=	p_Language_Name);

BEGIN

v_New_EEC_Id	:=	1;

IF	p_Language_Name	=	‘English’	THEN

DELETE	English_European_Countries;

ELSIF	p_Language_Name	=	‘French’	THEN

DELETE	French_European_Countries;

END	IF;

OPEN	c_Get_Countries_Lang;

LOOP

FETCH	c_Get_Countries_Lang

INTO	v_Country_Id,	v_Language_Id;

EXIT	WHEN	c_Get_Countries_Lang%NOTFOUND;

v_Language_Category	:=	get_category(v_Language_Id,	v_Country_Id);

IF	v_Language_Category	=	‘MAIN’	THEN

v_Make_Flag	:=	get_flag	(v_Language_Id,	v_Country_Id);

IF	v_Make_Flag	=	1	THEN

SELECT	Country_Name,	Country_Code	INTO	v_Country_	Name,	v_Country_Code

FROM	countries	WHERE	Country_Id	=	v_Country_Id;

IF	p_Language_Name	=	‘English’	THEN

INSERT	 INTO	 English_European_Countries	 (English_	 CL_Id,

Country_Code,	Country_Name,	Language_Category)

VALUES	(v_New_EEC_Id,	v_Country_Code,	v_Country_

Name,	v_Language_Category);

ELSIF	p_Language_Name	=	‘French’	THEN

INSERT	 INTO	 French_European_Countries	 (French_	 CL_Id,

Country_Code,	Country_Name,	Language_Category)

VALUES	 (v_New_EEC_Id,	 v_Country_Code,	 v_Country_Name,

v_Language_Category);

END	IF;

v_New_EEC_Id	:=	v_New_EEC_Id	+	1;

END	IF;

END	IF;

COMMIT;

END	LOOP;

CLOSE	c_Get_Countries_Lang;

END;

/

As	you	can	see,	we	have	a	very	impressive	logic	and	procedural	design,	according
to	the	business	definition.	The	principles	of	structured	programming	are	satisfied	and	the
application	 developer	 is	 extremely	 happy,	 he	 is	 home!	 It	 does	 not	matter	 that	 his	 home
does	not	mean	a	good	performance	 in	 the	database,	 that	 the	number	of	 lines	of	codes	 is
triple	and	the	logic	is	infinitely	more	complex,	he	is	actually	home.

The	 question	 is:	 whose	 home?	 For	 sure,	 the	 database	 is	 not	 their	 home	 and	 the
application	developers	should	learn	the	rules	from	the	database	house	if	 they	want	 to	be
welcomed	guests.	Maybe	this	home	is	not	so	pleasant	for	some	of	them	but	if	the	business
requires	their	presence,	they	should	try	to	learn	and	follow	the	rules.

Let’s	go	back	to	the	example	and	let’s	prepare	the	holistic	solution	for	the	exercise.
Now	we	will	see	that	even	the	business	definition	could	be	changed	to	be	SQL	oriented.

What	 do	 you	 think	 about	 that?	 Any	 programmer,	 before	 doing	 his	 development	 work,
should	gather	the	requirements.	He	can	use	the	services	of	a	specialized	business	analyst
or	he	can	 try	 to	prepare	 the	 requirements	on	his	own.	Many	programmers	are	preparing
their	own	requirements	and	few	of	them	have	the	luck	to	work	with	specialized	business
analysts.	 Therefore,	 the	 first	 phase	 -	 the	 requirements,	 is	 very	 often	 done	 by	 the
programmers.	Even	here,	at	 this	early	stage,	 the	vision	can	be	atomic	or	holistic.	Please
read	the	business	requirement	some	pages	before,	the	business	requirement	written	by	an
authentic	application	developer	 that	 is	 ignoring	completely	his	presence	 in	 the	database.
Let’s	see	the	same	business	requirement	written	in	a	total	different	style.

The	Business	(technical)	request:

We	 need	 to	 generate	 the	 same	 report	 table,	 in	 the	 full	 approach	 like	 in	 the	 previous
chapter	with	 one	 difference.	 The	 data	 should	 be	 generated	 from	 the	 set	 of	 three	 source
tables	into	the	target	reporting	table,	either	English	or	French,	for	the	countries	where	the
language	is	principal	(MAIN)	and	for	the	countries	with	the	positive	flag	(1).

Now	the	text	looks	like	a	simple	query,	don’t	you	think?	This	is	exactly	what	it	is.
We	need	to	generate	the	English	or	French	European	countries	for	the	ones	with	the	flag
set	 to	one	and	category	main.	It	 is	a	simple	insert	select	statement,	and	the	difference	in
the	logic	is	obvious.	Let’s	see	the	holistic	approach	for	Oracle.

Code	example	19:	Oracle	Holistic	Inc	transfer	new	fiilter	conditions	CREATE	OR	REPLACE	PROCEDURE

Holistic_Transfer_Country_Flag

(

p_Language_Name	VARCHAR

)

AS

BEGIN

DELETE	English_European_Countries

WHERE	p_Language_Name	=	‘English’;

DELETE	French_European_Countries

WHERE	p_Language_Name	=	‘French’;

INSERT	 INTO	 English_European_Countries	 (English_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	ROW_NUMBER()	OVER	(ORDER	BY	c.Country_Code,	cl.Language_Category)	AS	English_CL_Id,

c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	 l.Language_Name	 =	 p_Language_Name	 AND	 p_Language_Name	 =	 ‘English’	 AND

cl.Language_Category	=	‘MAIN’	AND	cl.Make_	Flag	=	1;

INSERT	 INTO	 French_European_Countries	 (French_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

ELECT	ROW_NUMBER()	OVER	(ORDER	BY	c.Country_Code,	cl.Language_	Category)	AS	French_CL_Id,

c.Country_Code,	c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	p_Language_Name

AND	p_Language_Name	=	‘French’

AND	cl.Language_Category	=	‘MAIN’	AND	cl.Make_Flag	=	1;

COMMIT;

END	Holistic_Full_Transfer_Country;

/

This	is	the	set	based	approach	and	the	holistic	style	of	development,	the	one	that	is
recommended	in	the	relational	database	and	that	should	be	used	by	every	programmer,	not
only	by	specialized	database	developers.	Let’s	examine	and	compare	 the	 two	 logics	and
see	the	difference	in	the	style.	In	the	holistic	approach	we	have	no	procedural	logic	at	all,
just	pure	SQL.

Let’s	see	the	steps:

1.	 The	countries	for	the	language	specified	as	parameter	are	deleted.	There	is	no
if-else	statement	and	the	language	specifies	just	the	filter	condition.	I
intentionally	removed	the	if-else	to	show	that	the	procedural	code	can	be
avoided	and	replaced	with	the	use	of	SQL.

2.	 The	countries	are	populated	for	the	English	or	French	from	the	set	of	source
tables.	Similarly,	the	use	of	filter	condition	after	the	language	parameter
replaces	the	if-else	statement.

3.	 Just	to	clarify,	one	language	will	be	transferred	based	on	the	value	of	the
parameter.	The	other	will	not	be	affected	at	all	because	the	filter	condition	for
the	language	will	not	be	satisfied.	The	reason	for	this	approach	was	to	use	that
the	procedural	code	is	very	often	optional	I	also	wanted	to	maximize	the	use	of
SQL	and	minimize	the	use	of	procedural	code.

The	 data	 in	 the	 target	 will	 be	 generated	 easily	 and	 straightforward,	 in	 a	 holistic
manner.	 The	 data	 set,	 depending	 on	 the	 value	 of	 the	 parameter,	 will	 be	 generated
according	 to	 the	 language.	 The	 difference	 comparing	 with	 practice	 1	 in	 the	 previous
chapter	 is	 that	 two	 new	 additional	 filter	 conditions	were	 added	 to	 the	 logic.	 These	will
replace	 the	 scalar	 functions	 and	 the	 rest	 of	 additional	 procedural	 facilities.	 Regarding
portability,	 see	 how	 the	 SQL	 server	 version	 is	 almost	 the	 same,	 these	 being	 others
advantages	of	the	holistic	style.

Code	example	20:	SQL	Server	holistic	transfer

CREATE	PROCEDURE	Holistic_Full_Transfer_Country

(

@p_Language_Name	VARCHAR	(50)

)

AS

BEGIN

DELETE	English_European_Countries

WHERE	@p_Language_Name	=	‘English’;

DELETE	French_European_Countries

WHERE	@p_Language_Name	=	‘French’;

INSERT	 INTO	 English_European_Countries	 (English_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	ROW_NUMBER()	OVER	(ORDER	BY	c.Country_Code,	cl.Language_Category)	AS	English_CL_Id,

c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	@p_Language_Name

AND	@p_Language_Name	=	‘English’

AND	cl.Language_Category	=	‘MAIN’	AND	cl.Make_Flag	=	1;

INSERT	 INTO	 French_European_Countries	 (French_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	ROW_NUMBER()	OVER	(ORDER	BY	c.Country_Code,	cl.Language_Category)	AS	French_CL_Id,

c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	@p_Language_Name

AND	@p_Language_Name	=	‘French’

AND	cl.Language_Category	=	‘MAIN’	AND	cl.Make_Flag	=	1;

END

GO

To	conclude,	imagine	that	the	quantity	of	data	is	moderate	to	medium	or	large	and
imagine	an	atomic	style.	This	scenario	is	not	exotic;	unfortunately,	this	is	really	happening
more	 often	 that	 we	 expect	 in	 many	 databases	 all	 over	 the	 world.	 The	 use	 of	 scalar
functions	is	one	example	of	scenario	to	be	avoided.	The	performance	of	scalar	functions	in
cursors	 is	 very	 poor	 and	 normally	 they	 should	 be	 avoided,	 with	 the	 exceptions	 of	 true
scalar	 functions,	 when	 applied	 to	 scalar	 data	 sets,	 returning	 exactly	 one	 row,	 like
configuration	data.

In	 the	data	migration	 interface	 that	 I	designed,	 I	have	 two	scalar	 functions.	These
are	 used	 for	 getting	 the	 values	 for	 configuration	 data,	 which	 are	 highly	 static	 data	 and
useful	 for	 the	 functionality	 of	 the	 data	 migration	 interface.	 In	 this	 case,	 because	 these
configuration	values	 actually	drive	 the	entire	data	migration	 /	 replication	 system,	 I	used
scalar	functions	because	their	meaning	is	the	same	like	in	any	classic	system.	Still,	apart
from	that	scenario,	I	never	used	them	because	I	don’t	need	them,	they	are	inefficient	and
they	require	the	intensive	use	of	cursors.

A	SIMPLE	QUERY!
Let’s	continue	to	illustrate	the	two	development	approaches	within	the	database	and	take
some	 more	 examples.	 Let’s	 see	 the	 context	 of	 a	 query.	 I	 know	 how	 important	 these
examples	are	for	any	developer,	experienced	or	not.	Words	and	concepts	are	good,	words
and	programming	code	is	even	better!	Consequently,	I	will	try	to	satisfy	both	of	them.

The	 future	practices	will	be	based	on	a	 simple	design	composed	 from	 two	 tables:
one	will	 contain	 a	 list	 of	products	 and	one	a	 list	 of	 the	 types	 for	 the	products,	with	 the
associated	foreign	key.	Let’s	see	the	table	design.

Code	example	21	products	and	their	types

CREATE	TABLE	Product_Types

(

Product_Type_Id	INT	CONSTRAINT	Nn_Product_Type_Id	NOT	NULL,

Product_Type_Code	VARCHAR	(5)

CONSTRAINT	Nn_Product_Type_Code	NOT	NULL,

Name	VARCHAR	(255)	CONSTRAINT	Nn_Product_Type_Name	NOT	NULL,

CONSTRAINT	Pk_Product_Type_Id	PRIMARY	KEY	(Product_Type_Id)

);

CREATE	TABLE	Products

(

Product_Id	INT	CONSTRAINT	Nn_Product_Id	NOT	NULL,

Name	VARCHAR	(30)	CONSTRAINT	Nn_Product_Name	NOT	NULL,

Product_Code	VARCHAR	(5)

CONSTRAINT	Nn_Product_Code	NOT	NULL,

Product_Description	VARCHAR	(255),

Make_Flag	INT,

Product_Type_Id	INT,

Default_Quantity	INT,

CONSTRAINT	Pk_Product_Id	PRIMARY	KEY	(Product_Id),

CONSTRAINT	Fk_Products_Product_Types

FOREIGN	KEY	(Product_Type_Id)

REFERENCES	Product_Types	(Product_Type_Id)

);

The	table	“products”	contains	the	following	columns:

1.	 The	column	product	id	is	a	unique	and	artificial	product	identifier,	and	this	is
the	primary	key	too.

2.	 The	column	product	name	represents	the	name	of	the	product.
3.	 The	column	product	code	represents	the	code	of	the	product
4.	 The	column	product	description	represents	the	description	of	the	product.
5.	 The	flag	called	make	flag	can	be	either	zero	or	one.
6.	 The	type	of	the	product	is	specified	as	a	reference	to	the	table	with	product

types.
7.	 The	default	quantity	for	the	product	will	be	used	later.

Let’s	see	some	values	and	see	the	insert	script:
Code	example	22:	Populate	products	and	types

INSERT	INTO	Product_Types	(Product_Type_Id,	Product_Type_	Code,	Name)

VALUES	(1,	‘C1’,	‘Product	type	01	description’);

INSERT	INTO	Product_Types	(Product_Type_Id,	Product_Type_	Code,	Name)

VALUES	(2,	‘C2’,	‘Product	type	02	description’);

INSERT	INTO	Product_Types	(Product_Type_Id,	Product_Type_	Code,	Name)

VALUES	(3,	‘D3’,	‘Product	type	03	description’);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(1,	‘Product	01’,	‘A1’,	0,	1,	10);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(2,	‘Product	02’,	‘A2’,	1,	2,	20);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(3,	‘Product	03’,	‘A3’,	0,	1,	5);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(4,	‘Product	04’,	‘A4’,	1,	3,	1);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(5,	‘Product	05’,	‘A5’,	0,	1,	9);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(6,	‘Product	06’,	‘A6’,	0,	1,	20);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(7,	‘Product	07’,	‘A7’,	0,	2,	15);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(8,	‘Product	08’,	‘A8’,	1,	3,	6);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(9,	‘Product	09’,	‘A9’,	1,	1,	8);

INSERT	 INTO	 Products	 (Product_Id,	 Name,	 Product_Code,	 Make_	 Flag,	 Product_Type_Id,

Default_Quantity)

VALUES	(10,	‘Product	10’,	‘A10’,	1,	2,	8);

Let’s	see	the	values	for	the	products	and	their	types:

Everything	 starts	with	 the	 business	 requirements.	Now	we	 have	 a	 simple	 design,
some	familiar	products	and	their	types.	Let’s	see	what	we	want	from	this	list	of	products,

for	the	moment!

Business	requirement:

We	want	to	get	a	simple	result	set,	a	data	set	taken	from	the	products	table.	We	want
to	 select	 the	 product	 identifier,	 the	 name	 for	 each	 product,	 the	 name	 for	 the	 previous
product	and	the	product	code	for	the	previous	product	if	the	flag	is	set	to	one	otherwise	the
current	 product	 code.	 The	 concept	 of	 previous	 product	 applies	 based	 on	 the	 product
identifier.	For	example,	the	previous	product	for	product	id	3	is	product	id	2	etc.

This	exercise	seems	very	suitable	for	the	atomic	approach	as	it	looks	like	we	need	to
access	 the	 data	 row-by-row	 and	gather	 the	 information	 for	 the	 previous	 rows.	This	 is	 a
complex	example	and	the	use	of	atomic	approach	may	be	understandable.	That	does	not
mean	it	cannot	be	avoided	but	you	need	to	have	good	eyes	and	a	good	SQL	oriented	mind
to	 be	 able	 to	 see	 the	 holistic	 approach.	 For	 the	 moment,	 we	 will	 focus	 on	 the	 atomic
approach	that	may	seem	unavoidable.

Any	 experienced	 application	 developer	 will	 start	 dividing	 everything	 into	 small
pieces	of	code,	will	start	imagining	how	will	move	the	previous	values	into	variables	for
each	row	etc.	We	are	happy	with	the	10	products	that	we	have,	so	there	is	no	problem	in
working	 atomically	 from	 the	 performance	 point	 of	 view.	 However,	 this	 is	 actually	 a
sample	 from	 a	 large	 table	with,	 let’s	 say	 one	 hundreds	 or	 thousands	 or	more	 products.
Things	might	change	if	we	are	digging	into	larger	data	set	atomically	from	the	beginning
without	questioning	ourselves	if	there	is	no	other	way	to	solve	the	problem!	We	will	see
that	there	is,	in	spite	of	some	evidences.

Most	 of	 the	 developers	 are	 familiarized	 with	 the	 atomic	 style	 and	 this	 is
understandable	 to	 a	 certain	 point,	 because	 this	 style	 is	 the	 one	 that	 is	 used	 at	 the	 user
interface	 level	 where	 we	 don’t	 have	 the	 concept	 data	 set.	 Thinking	 SQL	 and	 thinking
holistically	requires	a	different	vision	and	a	different	style.	Still,	the	good	news	is	that	this
style	is	simpler	and	the	things	are	much	easier	in	the	holistic	approach	that	offers	us	the
great	advantage	of	a	better	performance.	The	differences	in	performance	between	the	two
styles	in	a	significant	quantity	and	variety	of	data	are	impressive	for	anyone	who	wants	to
do	some	testing.

What	you	need	to	do,	I	repeat,	is	to	start	getting	friend	with	the	data.	Try	to	query
more,	try	to	dig	into	the	data	and	see	more	meanings,	try	to	correlate	the	business	with	the
data	and	 try	 to	see	 the	business	 in	 the	data.	More	 than	 that,	you	can	 try	 to	 transfer	your
atomic	vision	in	the	new	one,	holistic.	This	means	try	to	find	the	data	sets	from	the	data
rows.	 You	 need	 to	 make	 an	 effort	 and	 you	 need	 to	 change	 your	 vision	 against	 data,
actually	 better	 said,	 you	 need	 to	 start	 having	 a	 vision	 against	 the	 data.	 The	 atomic
approach	actually	starts	from	a	lack	of	vision	against	the	data.	Using	the	typical	approach
of	development	in	the	database	starts	from	a	total	neglect	of	the	most	intimate	resort	of	the
database,	the	nature	of	data.	The	nature	of	data	is	holistic,	set	oriented.

Let’s	go	back	to	our	exercise.	This	exercise	might	be	solved	in	many	similar	ways.	I
picked	up	one	solution	for	the	atomic	approach	and	one	solution	for	the	holistic	approach.
Let’s	investigate	the	atomic	approach,	and	let’s	see	the	code	for	SQL	Server.

Code	example	23	Get	the	products	atomically,	SQL	Server.

CREATE	PROCEDURE	Get_Products_Atomically

AS

BEGIN

DECLARE	@v_Product_Id	NUMERIC	(10,	0),	@v_Prev_Product_Code	NVARCHAR	(5);

DECLARE	@v_First_Name	NVARCHAR	(30),	@v_First_Product_Code	NVARCHAR	(200)

DECLARE	@v_Current_Name	NVARCHAR	(30),	@v_Min1_Product_Id	NUMERIC	(10,	0);

DECLARE	@v_Previous_Name	NVARCHAR	(30),	@v_Product_Code	NVARCHAR	(200);

DECLARE	@v_Min_Product_Id	NUMERIC	(10,	0),	@v_Make_Flag	INT;

DECLARE	@v_Products	TABLE(Product_Id	INT,	Current_Name	NVARCHAR	(30),

Previous_Name	NVARCHAR	(30),	Product_Code	NVARCHAR	(5));

SELECT	@v_Min_Product_Id	=	MIN	(Product_Id)	FROM	Products;

SELECT	@v_Min1_Product_Id	=	MIN	(Product_Id)

FROM	Products	WHERE	Product_Id	>	@v_Min_Product_Id;

SELECT	@v_First_Name	=	Name	FROM	Products

WHERE	Product_Id	=	@v_Min_Product_Id;

SELECT	@v_First_Product_Code	=	Product_Code

FROM	Products	WHERE	Product_Id	=	@v_Min_Product_Id;

INSERT	INTO	@v_Products	(Product_Id,	Current_Name,	Product_	Code)

SELECT	Product_Id,	Name,

CASE	WHEN	Make_Flag	=	1	THEN	NULL	ELSE	Product_Code	END	AS	Product_Code

FROM	Products	WHERE	Product_Id	=	@v_Min_Product_Id;

DECLARE	c_Products	CURSOR	FOR

SELECT	Product_Id,	Name,	Product_Code,	Make_Flag	FROM	Products

WHERE	Product_Id	>	@v_Min_Product_Id

ORDER	BY	1;

OPEN	c_Products;

FETCH	NEXT	FROM	c_Products

INTO	@v_Product_Id,	@v_Current_Name,	@v_Product_Code,	@v_	Make_Flag;

WHILE	(@@FETCH_STATUS	=	0)

BEGIN

IF	(@v_Min1_Product_Id	=	@v_Product_Id)

BEGIN

SET	@v_Previous_Name	=	@v_First_Name;

IF	(@v_Make_Flag	=	1)

SET	@v_Prev_Product_Code	=	@v_First_Product_Code;

ELSE

SET	@v_Prev_Product_Code	=	@v_Product_Code;

INSERT	INTO	@v_Products	(Product_Id,	Current_Name,	Previous_Name,	Product_Code)

SELECT	@v_Product_Id,	@v_Current_Name,	@v_Previous_Name,	@v_Prev_Product_Code

SET	@v_Previous_Name	=	@v_Current_Name;

END

ELSE

BEGIN

IF	(@v_Make_Flag	=	0)

SET	@v_Prev_Product_Code	=	@v_Product_Code;

INSERT	INTO	@v_Products	(Product_Id,	Current_Name,	Previous_Name,	Product_Code)

SELECT	@v_Product_Id,	@v_Current_Name,	@v_Previous_	Name,	@v_Prev_Product_Code

SET	@v_Previous_Name	=	@v_Current_Name;

SET	@v_Prev_Product_Code	=	@v_Product_Code;

END

FETCH	NEXT	FROM	c_Products

INTO	@v_Product_Id,	@v_Current_Name,	@v_Product_Code,	@v_	Make_Flag;

END;

CLOSE	c_Products;

DEALLOCATE	c_Products;

SELECT	*	FROM	@v_Products

END

GO

Let’s	analyze	the	logic,	step	by	step.

1.	 We	store	in	two	variables	the	product	identifiers	for	the	first	product	and	the
next	product.	See	the	variables	@v_Min_Product_Id	and
@v_Min1_Product_Id.

2.	 We	store	the	name	and	product	code	for	the	first	product.	See	the	variables
@v_First_Name	and	@v_First_Product_Code.

3.	 We	add	the	first	product	into	the	table	variable	see	the	table	variable
@v_Products.

4.	 We	open	the	cursor	with	all	the	products	apart	from	the	first	one.	See	the	cursor
named	c_Products.

5.	 For	the	second	product	(the	first	one	in	the	cursor,	equal	with	the	variable
@v_Min1_Product_Id),	we	setup	the	previous	name	and	we	check	the	flag.	If
the	flag	is	set	to	one,	the	previous	code	is	the	first	product	code.	Otherwise,	the
previous	code	is	the	current	product	code.	We	add	the	data	using	the	variables
into	the	table	variable	and	set	the	previous	name	to	current	name.

6.	 If	is	another	product	apart	from	the	second	one	(first	one	in	the	cursor),	we
check	the	flag.	If	is	set	to	zero,	the	previous	product	code	will	become	the
current	product	code.	Add	the	data	to	the	results	table	and	setup	the	values	for
the	@v_Previous_Name	and	@v_Prev_Product_Code.

7.	 Select	the	data	from	the	table	variable	(@v_Products).

Let’s	 analyze	 the	SQL	Server	 solution	 for	 the	 atomic	 approach	more	 deeply.	The
Oracle	solution	is	similar	but	even	more	procedural!

As	you	can	see	 it	 is	quite	 logic!	We	are	using	a	 table	variable	and	we	are	using	a
mixed	solution,	half-atomic	and	half-holistic.	The	 table	variable	 is	 firstly	populated	 in	a
holistic	manner,	in	a	set-oriented	style.	Then,	due	to	the	complexity	of	the	logic,	a	cursor
is	opened	and	the	table	is	updated.	This	is	a	kind	of	mixed	approach	and	it	is	better	than	a
complete	atomic	approach	that	we	could	have	used	and	that	could	have	been	used	by	the
fans	of	classic	development.

This	is	somehow	a	classic	SQL	Server	style	of	development,	according	to	which	a
table,	 either	 a	 table	variable	or	 a	 temporary	 table	 if	 larger,	 is	manipulated	 several	 times
until	it	gets	the	proper	data.	This	approach	is	the	mixed	approach	I	was	talking	about	and
is	better	 than	a	complete	atomic	approach.	Sometimes	 it	 is	even	 the	best	method.	As	an
alternative,	we	could	do	everything	in	a	cursor	and	handle	all	 the	things	complete	in	the
cursor	 in	 the	most	pure	 atomic	 style	but	 I	wanted	 to	offer	 another	paradigm,	 the	mixed
approach.

As	you	perhaps	know,	 the	 temporary	table	 is	very	common	in	SQL	Server,	not	so
much	used	in	Oracle.	The	temporary	table	or	even	the	variable	of	type	table,	or	a	record	or

a	collection	if	we	look	into	the	garden	of	Oracle,	or	whatever	kind	of	structure	might	be
useful	features	and	are	part	of	the	development.	Sometimes	these	are	to	be	combined	in	a
mixed	 approach	 like	 in	 this	 example	 and	 things	will	 be	 handled	 partially	 holistically	 in
data	 sets	 and	atomically	 afterwards.	One	 solution	 is	 to	partially	generate	 a	data	 set	 in	 a
structure	like	a	temporary	table	or	an	array	and	following	a	holistic	style	and	populate	that
structure.	Afterwards,	we	may	need	 to	update	 the	data	generated	 in	 the	 temporary	 table
and	need	to	follow	an	atomic	approach	and	handle	the	rest	of	the	logic	atomically.	This	is
what	we	did	here.

This	is	an	example	of	a	semi	classic	procedural	approach	that	is	used	to	generate	the
results	set	according	to	the	requirements.	This	is	what	most	of	the	students	know,	this	is
what	 most	 of	 the	 application	 developers	 are	 doing	 in	 the	 database:	 structured
programming	 and	 the	 use	 of	 the	 atomic	 development	 approach.	The	 rows	 in	 the	 source
table	 are	 taken	 in	 the	 cursor	 row	 by	 row,	 handled	 atomically:	 various	 conditions	 are
checked	against	the	variables	stored	row	by	row.	In	the	Oracle	version,	the	things	are	quite
similarly	with	the	difference	that	the	objects	are	even	more	procedural	than	in	SQL	Server,
using	 real	 structures	 (so	 called	 records)	 and	 arrays.	 The	 SQL	Server	 table	 variable	 is	 a
simpler	 structure	 and	 it	 is	 close	 to	 SQL,	 the	 Oracle	 types	 are	 more	 procedural.	 The
meaning	and	the	style	are	the	same;	the	atomic	approach	is	the	same.

This	 is	 the	 general	 trend	 and	 this	 is	 the	 preferred	 style	 that	 is	 used	 in	 many
databases,	 part	 of	 software	 applications	 despite	 the	 fact	 that	 we	 can	 use	 the	 other
approach,	native	 to	 the	database,	 the	holistic	approach.	We	can	identify	situations	where
the	 atomic	 style	 needs	 to	 be	 used,	 because	 these	 kinds	 of	 situations	 do	 exist.	However,
very	often,	more	often	than	we	can	imagine,	the	atomic	approach	and	the	procedural	style
can	 be	 avoided	 and	 replaced	 with	 the	 holistic	 approach	 and	 the	 pure	 SQL	 style	 of
development.

The	application	developer	is	used	to	see	things	atomically	and	he	has	the	tendency
to	divide	everything	atomically.	He	doesn’t	necessarily	see	the	data	set,	the	set	of	rows	to
be	affected,	he	sees	variables	and	he	tries	to	divide	the	logic	in	variables.	He	is	tempted	to
open	cursors	almost	every	time	and	he	is	tempted	to	transfer	the	logic	within	the	database
in	 the	application.	 In	addition,	 this	 tendency	brings	 logic	within	 the	database	 that	 is	 too
sophisticated	and	to	complicated.	More	than	that,	the	relational	model	is	too	simple	for	the
application	developer	and	it	builds	things	in	a	very	complicated	way.

Let’s	see	the	results:

Let’s	 see	 the	 solution	 for	 the	 holistic	 approach	 for	 this	 problem	 and	 analyze	 the
solution.	 In	 this	 particular	 scenario,	we	 do	 have	 a	 complete	 holistic	 approach.	You	 can
compare	again	the	two	approaches	and	you	can	see	the	differences.	From	the	performance
point	of	view,	you	can	try	to	generate	some	larger	data	sets	and	compare	the	timing	in	both
implementations.	You	will	be	amazed	to	see	the	differences.

The	holistic	approach	is	so	simple	comparing	with	the	atomic	approach!	Let’s	see	it
first	and	then	analyze	it.

Code	example	24	Get	the	products	holistically,	SQL	Server.

CREATE	PROCEDURE	Get_Products_Holistically

AS

SELECT	Product_Id,	Current_Name,	Previous_Name,	Product_Code

FROM

(

SELECT	a.Product_Id,	p_Current.Name	AS	Current_Name,	p_

Previous.Name	AS	Previous_Name,

CASE	WHEN	p_Current.Make_Flag	=	1	THEN	p_Previous.Product_

Code	ELSE	p_Current.Product_Code	END

AS	Product_Code,	1	AS	Type

FROM

(

SELECT	Product_Id,	ROW_NUMBER	()	OVER	(ORDER	BY	Product_	Id)	Current_Row_No,

ROW_NUMBER	()	OVER	(ORDER	BY	Product_Id)	-1	AS	Previous_Row_No

FROM	Products

)	a	INNER	JOIN	Products	p_Current	ON	(p_Current.Product_Id	=	a.Product_Id)

INNER	JOIN

(

SELECT	 Name,	 Product_Id,	 Product_Code,	 ROW_NUMBER	 ()	 OVER	 (ORDER	 BY	 Product_Id)

Row_No	FROM	Products

)	p_Previous	ON	(p_Previous.Row_No	=	a.Previous_Row_No)

UNION

SELECT	TOP	1	Product_Id,	Name	AS	Current_Name,	NULL	AS	Previous_Name,

CASE	WHEN	Make_Flag	=	1	THEN	NULL	ELSE	Product_Code	END	AS	Product_Code,	0	AS	Type

FROM	Products

ORDER	BY	Type,	Product_Id

)	A

GO

What	 is	 that,	 someone	might	ask!	Just	one	select	statement	 for	so	many	 things,	 is
that	possible?	The	answer	is	yes,	a	simple	select	statement	solves	all	the	problems.	There
is	no	need	for	cursors,	no	need	for	records	or	table	or	temporary	variables	to	populate	etc.
There	 is	 no	 need	 for	 an	 atomic	 approach,	 not	 even	 for	 a	mixed	 approach.	 One	 simple
select	statement	was	enough.

First,	 please	 try	 and	 compare	 the	 results.	 For	 that,	 you	 should	 execute	 the	 store
procedures	in	SQL	Server	and	compare	the	results.	You	will	see	the	same	results	because
the	logic	is	the	same	only	that	the	approaches	and	styles	are	totally	different.

This	 is	 not	 a	 simple	 example	 and	 not	 everybody	 knows	 how	 to	 do	 it,	 it	 is	 not	 a
simple	 exercise.	 However,	 it	 is	 not	 impossible;	 an	 effort	 is	 required	 for	 understanding.
What	you	need	to	do	is	to	look	at	the	data	and	analyze	everything,	you	should	be	aware	of
the	set	based	operators	and	functions	like	row	number;	you	should	try	to	imagine	how	you
take	the	data	from	the	previous	row	in	a	direct	SQL	and	not	in	a	cursor.	In	this	scenario,
most	 of	 the	 programmers	 would	 choose	 the	 atomic	 approach,	 even	 some	 database
programmers.	 It	 looks	 like	 a	 case	 for	 a	 cursor	 and	 for	manipulation.	Still,	 this	 example
proves	 that	 even	 practices	 seeming	 to	 require	 an	 atomic	 solution,	 can	 be	 solved
holistically.	You	need	to	have	enough	imagination	and	you	need	to	jump,	mentally,	from
one	row	to	another	and	get	the	data.

I	always	like	to	say	that	SQL	can	do	miracles	and	this	is	a	good	example!

I

Chapter	7

WRITING	SQL	VERSUS	WRITING	PROCEDURALLY,
OTHER	HOLISTIC	METHODS

WRITING	SQL	VERSUS	WRITING	PROCEDURALLY,	ANOTHER
IMPEDIMENT!	AN	EXAMPLE	OF	UPDATE!

will	 continue	with	more	 examples	 following	 the	 same	 purpose,	 to	 illustrate	 the	 two
styles	 of	 development.	 I	 will	 use	 the	 same	 simple	 design	 taken	 from	 an	 Inventory

database,	 the	 design	 with	 the	 two	 tables	 that	 store	 products	 information:	 products	 and
product	types.	If	you	will	take	a	closer	look	at	the	data	in	the	tables,	you	will	notice	that
there	is	no	description	for	the	products.	Our	purpose	in	the	following	exercise	is	to	update
the	description	based	on	a	certain	algorithm.	Let’s	 see	 the	description	of	 the	problem,	a
description	 written	 in	 the	 most	 pure	 atomic	 style	 and	 very	 clear	 for	 an	 application
developer.

Business	(technical)	description:

We	want	to	update	the	product	description	in	the	products	table.	Maybe	you	know
that	in	the	field	of	inventory	(production)	the	products	codes	have	their	own	significance.
According	to	this,	you	can	see	an	algorithm	for	the	description	based	on	the	code	of	the
type	(field	product	 type	 in	 the	 table	Product_	Types)	and	 the	already	 familiar	 flag	(field
Make_Flag	 from	the	 table	Products).	 If	 the	 type	of	 the	code	starts	with	C	letter	 then	we
should	look	at	the	flag.	If	the	flag	is	one,	we	need	to	concatenate	the	constant	string	value
DESC	 plus	 the	 code	 of	 the	 product	 and	 the	 code	 of	 the	 type	 otherwise	 we	 should
concatenate	the	constant	DESC	plus	the	code	of	the	product	plus	the	name	of	the	product.
If	the	type	of	the	code	is	anything	else	but	C	we	are	looking	at	the	flag	and	add	the	name
of	the	product	and	the	constant	if	is	1	otherwise	we	add	the	type	of	the	code.

Looking	at	the	above	code,	you	can	easily	see	that	is	very	probable	for	the	analyst
or	 developer	 to	 thinks	 atomically	 and	 procedurally.	 From	 the	 business	 /	 technical
description	 you	 can	 already	 derive	 the	 set	 of	 if-else	 statements,	 eventually	 the	 scalar
functions,	 all	 of	 them	 in	 a	 common	 and	 popular	 nice	 cursor!	 This	 will	 be	 the	 atomic
approach.	I	don’t	want	to	insist	very	much	with	the	explanations,	this	exercise	is	similar	to
the	others	in	the	previous	chapters.

The	chosen	solution,	one	of	the	many,	will	be	described.	The	developer	will	create
one	function	get_type	with	the	parameter	the	product	identifier.	This	procedure	will	return
the	type	based	on	the	flag,	one	of	the	two	parts	of	the	algorithms.	Let’s	see	the	function	in
Oracle	version.

Code	example	25	Get	product	type	Oracle

CREATE	FUNCTION	Get_Type

(

p_Product_Id	INT

)

RETURN	VARCHAR2

AS

v_Type	VARCHAR2	(255);

v_Make_Flag	INT;

BEGIN

SELECT	Make_Flag	INTO	v_Make_Flag	FROM	Products	WHERE	Product_Id	=	p_Product_Id;

IF	(v_Make_Flag	=	1)	THEN

SELECT	t.Product_Type_Code	INTO	v_Type

FROM	Product_Types	t	INNER	JOIN	Products	p

ON	(p.Product_Type_Id	=	t.Product_Type_Id)

WHERE	p.Product_Id	=	p_Product_Id;

ELSE

SELECT	t.Name	INTO	v_Type

FROM	Product_Types	t	INNER	JOIN	Products	p

ON	(p.Product_Type_Id	=	t.Product_Type_Id)

WHERE	p.Product_Id	=	p_Product_Id;

END	IF;

RETURN	(v_Type);

END;

/

For	a	given	product,	based	on	 the	value	of	 the	 flag,	we	either	generate	 the	 type’s
code	from	the	product	types	table	or	the	name	of	the	product	from	the	products	table.	This
is	a	classic	scalar	function	and	the	purpose	is	obvious,	this	function	will	be	executed	in	a
cursor	for	all	the	products	later.	This	is	one	of	the	most	common	scenarios	of	work	for	an
application	developer.

After	building	this	function,	the	logic	will	continue	with	the	update	procedure.	Let’s
see	it	first	and	then	analyze.

Code	example	26	Update	product	description	Oracle	Atomic

CREATE	PROCEDURE	Upd_Products_Desc_Atomic

AS

v_Product_Id	INT;

v_Product_Type_Code	VARCHAR2	(5);

v_Product_Code	VARCHAR2	(5);

v_Description	VARCHAR2	(255);

v_Generated_Type	VARCHAR2	(255);

v_rid	ROWID;

CURSOR	c_Get_Products	IS

SELECT	Product_Id,	rowid	FROM	Products	FOR	UPDATE	OF	Product_	Description;

BEGIN

OPEN	c_Get_Products;

LOOP

EXIT	WHEN	c_Get_Products%NOTFOUND;

FETCH	c_Get_Products	INTO	v_Product_Id,	v_rid;

v_Generated_Type	:=	Get_Type(v_Product_Id);

SELECT	p.Product_Code,	t.Product_Type_Code	INTO	v_Product_	Code,	v_Product_Type_Code

FROM	Products	p	INNER	JOIN	Product_Types	t

ON	(p.Product_Type_Id	=	t.Product_Type_Id)

WHERE	p.Product_Id	=	v_Product_Id;

v_Description	:=	‘DESC_’;

IF	(SUBSTR	(v_Product_Type_Code,	1,	1)	=	‘C’)	THEN

v_Description	:=	v_Description	||	v_Product_Code;

END	IF;

IF	 SUBSTR	 (v_Description,	 LENGTH	 (v_Description),	 1)	 <>	 ‘_’	 THEN	 v_Description	 :=

v_Description	||	‘_’;

END	IF;

v_Description	:=	v_Description	||	v_Generated_Type;

UPDATE	Products

SET	Product_Description	=	v_Description

WHERE	rowid	=	v_rid;

END	LOOP;

COMMIT;

CLOSE	c_Get_Products;

END;

/

The	steps	are	quite	clear,	let’s	quickly	review:

1.	 Declare	the	cursor	for	the	table	products	with	the	option	of	updating	the
description,	our	goal.

2.	 Calculate	the	generated	type	using	the	function	created	before.
3.	 Use	a	string	inside	the	cursor	for	the	description	and	start	concatenate	to	that

string	(v_Description).
4.	 Get	the	code	of	the	product	and	the	product	code	and	product	code	type	for	the

given	product	taken	from	the	cursor.
5.	 If	the	first	letter	of	the	type	code	is	the	C	letter,	then	add	the	product	code	to

the	description	string.
6.	 Add	the	generated	type	and	finalize	the	description	for	the	given	product	inside

the	cursor.
7.	 Update	the	description	with	the	calculated	value	of	the	description	for	the

given	product.
8.	 That	will	happen	for	all	the	products.	Finally,	the	table	will	be	updated.

This	 is	 the	 classic	 atomic	 and	 procedural	 approach,	 so	 familiar	 to	 application
developers	that	can	be	followed	instinctively	by	many	new	programmers	in	the	database	if
they	are	not	warned	from	the	beginning	(I	might	say	starting	with	their	college	period)	that
they	should	write	their	code	in	a	different	way	if	they	are	inside	a	database.	Things	are	so
complicated	compared	with	a	simple	update,	one	simple	update!	This	is	what	we	call	the
holistic	 approach,	 a	 simple	 update	 statement.	 If	 the	 developer	 will	 read	 the	 business
description	in	a	holistic	manner	and	not	in	an	atomic	one,	he	will	find	the	holistic	solution
that	is	actually	trivial	for	a	SQL	developer.

I	will	 not	 display	 the	 atomic	 function	 and	update	procedure	 for	SQL	Server;	 it	 is
similar	with	the	differences	given	by	the	languages.	I	would	rather	prefer	to	mention	the
holistic	approaches	for	both	Oracle	and	SQL	Server	for	anyone	to	see	how	similar	these
are	and	to	understand	the	second	argument	for	the	holistic	approach:	portability.	So	let’s
see	the	holistic	approach	for	Oracle:

Code	example	27	Update	product	description	Oracle	Holistic

CREATE	PROCEDURE	Upd_Products_Desc_Holistic

AS

BEGIN

UPDATE	Products

SET	Product_Description	=	(SELECT

CASE	WHEN	Products.Make_Flag	=	1	AND	SUBSTR	(t.Product_	Type_Code,	1,	1)	=	‘C’

THEN	‘DESC_’	||	Products.Product_Code	||	‘_’	||	t.Product_Type_Code

WHEN	Products.Make_Flag	=	0	AND	SUBSTR	(t.Product_Type_	Code,	1,	1)	=	‘C’

THEN	‘DESC_’	||	Products.Product_Code	||	‘_’	||	t.Name

WHEN	Products.Make_Flag	=	0	AND	SUBSTR	(t.Product_Type_	Code,	1,	1)	<>	‘C’

THEN	‘DESC_’	||	t.Name

WHEN	Products.Make_Flag	=	1	AND	SUBSTR	(t.Product_Type_	Code,	1,	1)	<>	‘C’

THEN	‘DESC_’	||	t.Product_Type_Code

END

FROM	Product_Types	t	WHERE	t.Product_Type_Id	=	Products.	Product_Type_Id);

COMMIT;

END;

/

This	 is	 the	power	of	 the	“case”	statement.	This	statement	can	successfully	replace
the	“if-else”	statement	in	a	simple	SQL.	One	can	see	how	the	simple	update	statement	in
the	example	above	will	do	everything,	generate	the	descriptions	according	to	the	algorithm
and	update	the	columns.	Why	do	we	need	to	complicate	things	using	sophisticated	classic
methods	instead	of	using	the	power	of	simple	SQL	language	that	is	a	dedicated	language
for	relational	databases?

One	 can	 easily	 understand	 the	 algorithm	 from	 the	 SQL	 statement	 defined	 in	 the
holistic	 approach.	He	 can	 see	 the	 conditions	 specified	 in	 the	 “when”	 clause	 of	 the	 case
statement,	 nothing	 is	 secret	 or	 difficult	 in	 this	 update	 statement.	 Either	 a	 student	 or	 an
application	developer,	when	working	in	the	database,	one	cannot	act	like	not	being	there.

Let’s	see	the	holistic	approach	for	SQL	Server,	just	to	see	that	the	two	approaches
are	almost	identical.

--	Code	example	28	Update	product	description	SQL	Server	Holistic

CREATE	PROCEDURE	Upd_Products_Desc_Holistic

AS

BEGIN

UPDATE	Products

SET	Product_Description	=

CASE	WHEN	dest.Make_Flag	=	1

AND	SUBSTRING(t.Product_Type_Code,	1,	1)	=	‘C’

THEN	‘DESC_’	+	dest.Product_Code	+	‘_’	+	t.Product_

Type_Code

WHEN	dest.Make_Flag	=	0

AND	SUBSTRING	(t.Product_Type_Code,	1,	1)	=	‘C’

THEN	‘DESC_’	+	dest.Product_Code	+	‘_’	+	t.Name

WHEN	dest.Make_Flag	=	0

AND	SUBSTRING	(t.Product_Type_Code,	1,	1)	<>	‘C’

THEN	‘DESC_’	+	t.Name

WHEN	dest.Make_Flag	=	1

AND	SUBSTRING	(t.Product_Type_Code,	1,	1)	<>	‘C’

THEN	‘DESC_’	+	t.Product_Type_Code

END

FROM	Products	dest	INNER	JOIN	Product_Types	t

ON	(t.Product_Type_Id	=	dest.Product_Type_Id);

END

GO

Again,	I	am	sorry	for	repeating	this:	let’s	look	at	the	versions	for	the	two	procedures
in	Oracle	and	SQL	Server!	In	most	of	the	database	systems,	they	are	the	same!	One	would
see	 and	 understand	 the	 advantage	 of	 portability,	 and	 see	 how	 the	 code	 is	 very	 similar.
Things	are	almost	the	same	because	SQL	is	almost	the	same.	Of	course,	we	are	not	always
working	 for	 a	 software	 company	 that	 will	 handle	 the	 same	 software	 application	 using
many	 database	 systems.	However,	we	may	 change	 the	 project	 and	we	may	move	 from
Oracle	to	SQL	Server.	Working	SQL	and	holistically	offers	you	a	great	advantage.

However,	the	most	important	reason	for	a	holistic	approach	is	the	performance,	all
the	 rest	are	 secondary.	Performance,	portability,	 simplicity	of	 the	code,	and	 the	 fact	 that
the	data	set	is	the	keyword	that	defines	a	relational	database,	all	these	are	enough	reasons
for	an	application	developer	to	start	rethink	his	code	when	being	in	a	database	and	for	a
student	to	think	and	not	work	identically	in	both	user	interface	and	database.

WRITING	SQL	VERSUS	WRITING	PROCEDURALLY:	THE	POWER	OF
UNION	IN	THE	HOLISTIC	APPROACH!
The	battle	between	the	atomic	procedural	facilities	and	the	holistic	SQL	methods	of	work
may	continue!	The	most	important	thing	is	to	be	aware	of	this	battle	and	to	try	to	utilize
one	 kind	 of	 facility	 or	 another	 depending	 on	 the	 situation.	Most	 of	 all,	 we	 should	 not
forget	that	we	are	within	a	relational	database.

Let’s	imagine	a	situation	that	might	occur	in	various	systems,	especially	in	specific
systems	where	 the	 goal	 is	 to	move	data	 between	 classic	 systems.	We	have	 a	 target	 that
should	be	updated	from	various	sources	of	data.	By	updated	we	understand	that	new	data
is	 added	 to	 the	 target,	 from	 various	 sources	 of	 data,	 according	 to	 whatever	 business
conditions.	These	various	conditions	can	be	specified	by	using	the	procedural	means	like
if,	else	–	if,	else	statements.	Very	often,	the	same	logic	can	be	done	by	using	a	union.

Instead	 of	 using	 a	 variety	 of	 if-else	 and	 insert	 statements,	we	 can	 have	 only	 one
insert	statement	based	on	a	“union”.	This	is	not	a	surprise	considering	that	a	“union”	is	a
combination	of	data	 sets.	The	meaning	of	an	 if-else	 in	 this	context	 is	 the	one	of	adding
data	in	one	target	from	various	sources	based	on	a	certain	condition	or	another.	This	can
always	be	equivalent	to	a	union	composed	of	many	data	sets,	and	in	every	data	set,	we	can
specify	 the	 condition	 in	 the	 if-else.	One	 should	 be	 aware	 that	 the	 topic	 of	 discussion	 is
related	to	the	duality	SQL	versus	procedural,	is	not	necessarily	referring	to	the	opposition
atomic	holistic.	The	approach	can	be	holistic	but	 even	 the	holistic	 approach	can	be
implemented	in	a	SQL	style	or	in	a	procedural	style.	Moreover,	the	use	of	union	instead
of	if-else	is	a	solution	to	replace	a	procedural	code	with	SQL	code.	I	don’t	say	it’s	always
better	and	I	don’t	say	it	is	always	recommended,	but	I	just	recommend	to	be	kept	in	mind.
Sometimes	it	might	be	better,	especially	in	specific	systems.

In	a	specific	system	I	consider	that,	due	to	the	nature	of	this	system	of	data	transfer
between	various	classic	systems,	it	is	always	better	to	handle	things	both	holistically	and
SQL,	not	just	holistically.

Let’s	imagine	that	we	have	geographical	criteria	for	some	data	and	let’s	imagine	we
want	 to	populate	a	 target	 from	various	sources.	The	sources	are	 from	different	countries
and	we	 need	 to	 insert	 various	 pieces	 of	 information	 based	 on	 a	 condition	 like	 country.
Instead	 of	 using	 an	 “if	 else”,	we	 can	 use	 a	 “union”,	maybe	 even	 “union	 all”	 if	we	 are
certain	the	data	sets	are	distinct.	In	each	query	block	of	the	union,	we	have	the	respective
data	 set	 that	we	would	 have	 been	written	 in	 the	 if-else.	 Things	 are	 similar	 and,	 in	 this
context	of	an	insert	into	a	target	from	various	sources	based	on	various	conditions,	the	use
of	if-else	and	union	are	very	often	alternatives.	If	 this	is	 the	case,	sometimes	is	better	 to
use	union,	and	even	better,	to	use	union	all	if	possible,	obviously.

The	use	of	union	with	the	use	of	variables	that	specify	different	sets	of	data	can	be
easily	 integrated	 and,	 very	 often,	 large	 pieces	 of	 procedural	 code	 (not	 necessarily
atomically,	even	in	the	holistic	manner)	can	be	replaced	with	a	highly	simplified	piece	of
SQL	code.	For	example,	any	query	block	of	a	union	can	be	defined	according	to	a	value	of
a	 certain	 application	 setting.	 In	 this	 way,	 the	 query	 block	 may	 be	 identified	 either	 by
certain	 columns	 that	 need	 to	 satisfy	 some	 criteria	 (like	 country)	 but	 they	 can	 also	 be
defined	by	some	variables	too.

This	 sub	 chapter	 opens	 a	 new	 topic	 and	 describes	 another	 opposition	 inside	 a
relational	database.	The	main	topic	is	focused	on	the	opposition	between	the	holistic	and
atomic	style	of	development	inside	a	database.	Now,	apart	from	that	opposition,	we	have
another	opposition	between	procedural	and	SQL	code.	As	we	realize	now,	it	is	possible	to
write	holistic	and	either	procedural	and	SQL,	although	in	most	of	the	cases	the	procedural
style	 is	 associated	with	 the	 atomic	 style	 and	 the	 SQL	 style	 is	 associated	 to	 the	 holistic
style.	Still,	we	can	write	procedurally	 and	holistically.	The	example	with	 the	opposition
between	 the	 two	 types	 of	 statements,	 the	 “if-else	 “and	 the	 “union”,	 confirms	 the	 above
considerations.	Even	if	we	write	holistically	and	we	affect	data	sets,	we	can	use	any	of	“if-
else”	or	“union”	statements.	The	first	approach	is	procedural	and	the	second	one	is	SQL.	I
promote	 the	“union”.	Still,	 I	do	not	 say	 that	we	always	have	 justified	 reasons	 to	choose
this	solution.	Sometimes	it	may	be	better	to	use	if-else.	Still,	the	alternative	is	to	be	kept	in
mind.

Let’s	imagine	you	have	a	warehouse	of	SQL	templates	that	is	called	multiple	times
in	your	software	application,	at	the	database	level	of	course.	The	temptation	is	to	avoid	the
use	of	procedural	code	in	this	warehouse,	as	being	a	warehouse	of	SQL	statements.	In	this
case,	 you	 can	 use	 the	 union	 instead	 of	 if-else	 and	 your	 warehouse	 will	 really	 be	 a
warehouse	of	SQL	statements.	 I	have	built	 that	kind	of	warehouse	and	 it	has	almost	no
procedural	 code	 inside	 it,	 only	 pure	 SQL	 and	 almost	 everywhere,	 I	 found	 solutions	 to
replace	the	procedural	code.

Let’s	see	one	example	with	the	opposition	between	the	“if-else”	and	“union”.	Let’s
assume	 the	 same	 tables	 with	 the	 de-normalized	 English	 and	 French	 countries	 and	 the
normalized	 table.	Now	we	need	 to	assume	 the	other	direction.	We	will	assume	we	have
data	in	English	and	French	countries	and	we	need	to	populate	the	set	of	normalized	tables
like	Countries_Languages.	We	assume	we	have	 the	countries	 and	 the	 languages	and	we
just	 need	 to	populate	 the	 association	 tables.	Based	on	 a	variable	p_Language_Name	we
can	 add	 either	 French	 languages	 or	 English	 languages	 or	 both.	 Of	 course,	 the	 atomic
solution	can	be	used	and	I	will	not	insist	on	that	too	much,	simply	ignoring	it.	The	same
holistic	solution	can	be	made	in	a	more	specific	procedural	way	or	in	a	more	SQL	oriented
manner.

Let’s	see	the	procedural	solution.
--	Code	example	29	Holistic	and	Procedural	Oracle

CREATE	PROCEDURE	Holistic_Full_Tr_Country_Proc

(

p_Language_Name	VARCHAR

)

AS

v_English_Language_Id	INT;

v_French_Language_Id	INT;

v_Max_CL_Id	INT;

BEGIN

SELECT	Language_Id	INTO	v_English_Language_Id

FROM	Languages	WHERE	Language_Name	=	‘English’;

SELECT	Language_Id	INTO	v_French_Language_Id

FROM	Languages	WHERE	Language_Name	=	‘French’;

IF	p_Language_Name	=	‘English’	THEN

DELETE	Countries_Languages

WHERE	Language_Id	=	v_English_Language_Id;

ELSIF	p_Language_Name	=	‘French’	THEN

DELETE	Countries_Languages

WHERE	Language_Id	=	v_French_Language_Id;

ELSIF	p_Language_Name	=	‘Both’	THEN

DELETE	Countries_Languages

WHERE	Language_Id	=	v_English_Language_Id;

DELETE	Countries_Languages

WHERE	Language_Id	=	v_French_Language_Id;

END	IF;

SELECT	MAX(CL_Id)	INTO	v_Max_CL_Id

FROM	Countries_Languages;

IF	v_Max_CL_Id	IS	NULL	THEN

v_Max_CL_Id	:=	0;

END	IF;

IF	p_Language_Name	=	‘English’	THEN

INSERT	INTO	Countries_Languages	(CL_Id,	Country_Id,	Language_Id,	Language_Category)

SELECT	 v_Max_CL_Id	 +	 CL_Id_Seq.NextVal,	 c.Country_Id,	 v_English_Language_Id,

eec.Language_Category

FROM	 English_European_Countries	 eec	 INNER	 JOIN	 Countries	 c	 ON	 (c.Country_Code	 =

eec.Country_Code);

ELSIF	p_Language_Name	=	‘French’	THEN

INSERT	INTO	Countries_Languages	(CL_Id,	Country_Id,	Language_Id,	Language_Category)

SELECT	 v_Max_CL_Id	 +	 CL_ID_Seq.NextVal,	 c.Country_Id,	 v_French_Language_Id,

eec.Language_Category

FROM	 French_European_Countries	 eec	 INNER	 JOIN	 Countries	 c	 ON	 (c.Country_Code	 =

eec.Country_Code);

ELSIF	p_Language_Name	=	‘Both’	THEN

INSERT	 INTO	 Countries_Languages	 (CL_Id,	 Country_Id,	 Language_Id,

Language_Category)

SELECT	 v_Max_CL_Id	 +	 CL_ID_Seq.NextVal,	 c.Country_Id,	 v_English_Language_Id,

eec.Language_Category

FROM	 English_European_Countries	 eec	 INNER	 JOIN	 Countries	 c	 ON	 (c.Country_Code	 =

eec.Country_Code);

INSERT	INTO	Countries_Languages	(CL_Id,	Country_Id,	Language_Id,	Language_Category)

SELECT	 v_Max_CL_Id	 +	 CL_ID_Seq.NextVal,	 c.Country_Id,	 v_French_Language_Id,

eec.Language_Category

FROM	 French_European_Countries	 eec	 INNER	 JOIN	 Countries	 c	 ON	 (c.Country_Code	 =

eec.Country_Code);

END	IF;

COMMIT;

END	Holistic_Full_Tr_Country_Proc;

/

The	logic	 is	very	clear.	Based	on	the	 language,	either	 that	can	be	of	 type	English,
French	 or	 both,	 the	 data	 for	 that	 language	 in	 the	 normalized	 table	 like
Countries_Languages	is	deleted	and	replaced	with	the	data	from	the	one	reporting	table	or
the	other	or	both.	It	is	a	classic	“if-else”	statement,	nothing	else.	A	lot	of	programmers	will
do	it	like	this,	or	in	a	similar	fashion,	especially	the	application	developers.	This	is	a	pure
procedural	 solution,	 and	 fortunately	 is	 a	 holistic	 solution.	 Unfortunately,	 this	 exercise
could	 have	 been	 made	 atomically	 using	 a	 cursor	 and	 that	 would	 have	 been	 the	 worst
scenario.	Being	 a	 holistic	 solution	 is	 good,	 the	 application	 developer	 already	 learned	 to

think	holistically.	That	 is	great!	Now	I	want	 to	show	him	more	and	I	want	 to	show	him
that	sometimes	simple	SQL	statements	are	enough	and	the	quantity	of	procedural	code	can
be	 completely	minimized.	There	 is	 a	 lot	 of	 code	 in	 this	 procedure.	One	 should	 imagine
hundreds	of	pieces	 like	 this	 everywhere	 in	 the	 software	application	within	 the	database.
Even	more,	 let’s	 imagine	 that	 these	 can	 be	 avoided	 and	 replaced	with	 pure	 SQL	 code;
instead	of	10,000	lines	of	code,	you	will	have	3,000,	for	example.	In	most	of	the	cases,	the
performance	 will	 be	 better.	 Let’s	 see	 the	 holistic	 and	 SQL	 oriented	 solution	 for	 the
practice.

--Code	example	30	Holistic	and	Procedural	Oracle

CREATE	PROCEDURE	Holistic_Full_Tr_Country_SQL

(

p_Language_Name	VARCHAR

)

AS

BEGIN

DELETE	Countries_Languages	dest

WHERE	EXISTS

(

SELECT	1	FROM	Languages	lang

WHERE	lang.Language_Name	=	p_Language_Name

AND	p_Language_Name	IN	(‘English’,	‘French’)

AND	lang.Language_Id	=	dest.Language_Id

)

OR	EXISTS

(

SELECT	1	FROM	Languages	lang

WHERE	lang.Language_Name	IN	(‘English’,	‘French’)

AND	lang.Language_Name	=	‘Both’

AND	lang.Language_Id	=	dest.Language_Id

);

INSERT	INTO	Countries_Languages	(CL_Id,	Country_Id,	Language_Id,	Language_Category)

SELECT	v_Max_CL_Id	+	RowNum	AS	CL_Id,	Country_Id,	Language_	Id,	Language_Category

FROM

(

SELECT	c.Country_Id,	eec.Language_Category,

(SELECT	COALESCE(Max(CL_Id),	0)

FROM	Countries_Languages)	AS	v_Max_CL_Id,

(SELECT	Language_Id	FROM	Languages

WHERE	Language_Name	=	‘English’)	AS	Language_Id

FROM	 English_European_Countries	 eec	 INNER	 JOIN	 Countries_1	 c	 ON	 (c.Country_Code	 =

eec.Country_Code)

WHERE	p_Language_Name	IN	(‘English’,	‘Both’)

UNION

SELECT	c.Country_Id,	eec.Language_Category,

(SELECT	COALESCE(Max(CL_Id),	0)

FROM	Countries_Languages)	AS	v_Max_CL_Id,

(SELECT	Language_Id	FROM	Languages	WHERE	Language_Name	=	‘French’)	AS	Language_Id

FROM	 French_European_Countries	 eec	 INNER	 JOIN	 Countries_1	 c	 ON	 (c.Country_Code	 =

eec.Country_Code)

WHERE	p_Language_Name	IN	(‘French’,	‘Both’)

)	lf;

COMMIT;

END	Holistic_Full_Tr_Country_SQL;

/

As	you	can	see,	 this	 logic	contains	one	delete	 statement	and	one	 insert	 statement.
The	reason	is	simple:	SQL	contains	by	its	own	a	lot	of	“procedural”	facilities,	almost	all	of
them	set-oriented.	If	you	understand	the	power	of	SQL	language	and	if	you	understand	the
concept	of	data	 set,	you	will	be	able	 to	 see	 its	 strength	and	use	 it	properly.	The	code	 is
much	simpler	and	readable;	at	least	for	the	persons	that	finally	are	able	to	think	SQL,	the
performance	 is	 much	 better	 because	 SQL	 is	 set-based	 and	 is	 very	 fast	 and	 native	 for
working	with	data	sets,	and	this	is	what	we	are	doing	when	we	are	inside	a	database.

Speaking	 about	 the	 power	 of	 SQL	 and	 about	 the	 possibilities	 for	 a	 better
performance	 for	 SQL	 itself,	 this	 is	 a	 completely	 another	 topic,	 very	 challenging	 and
interesting.	 However,	 before	 thinking	 to	 improve	 our	 SQL	 code	 we	 should	 write	 it
properly.

An	artist,	a	writer	or	a	poet	works	continuously	to	improve	his	work.	For	example,	a
poet	wants	 to	 use	 the	metaphors	 better	 and	 he	works	 intensively	 to	 improve.	However,
before	doing	this,	he	makes	sure	his	writing	is	accurate	from	the	grammar	point	of	view
and	all	other	aspects.

First	of	all	the	programmer	needs	to	write	correctly,	he	should	write	holistically	and
SQL	if	he	is	inside	the	database.	Secondly,	when	he	is	able	to	write	set	oriented	and	SQL,
he	 can	work	 to	 improve	 his	SQL.	For	 that,	 there	 are	 so	many	 techniques	 and	methods,
starting	from	a	continuous	process	of	rewriting	for	the	SQL	itself	and	continuing	with	a	lot
of	features	and	techniques	available	for	the	database	engine.	Here	one	can	work	with	the
DBA	of	course.	At	this	level,	the	developer	needs	to	know	how	to	read	an	execution	plan,
he	needs	to	be	able	to	see	the	statistics	and	eventually	gather	new	ones	at	various	levels
etc.

If	you	compare	the	two	approaches	above,	you	will	see	the	difference	between	the
classic	procedural	style,	with	a	lot	of	if-else	statements,	variables	and	all	the	staff	and	the
set	 of	 simple	 SQL	 statements!	 You	 will	 see	 the	 mixture	 between	 the	 two	 types	 of
statements,	SQL	and	procedural.	 If	you	 look	at	 the	 last	example,	you	will	see	 just	some
pure	SQL	statements,	all	the	logic	is	included	in	the	SQL	itself.	In	a	data-oriented	specific
software	application	where	the	goal	is	to	simply	move	data	between	two	classic	systems,
this	SQL	style,	along	with	holistic	and	set-oriented,	is	the	one	that	is	highly	recommended,
at	least	according	to	my	opinion	and	experience.	I	will	not	show	the	SQL	Server	version
of	the	logic,	because	the	things	are	pretty	much	the	same	and	the	differences	are	minimal.
This	 is	 especially	 true	 because	 of	 the	 style	 and	 the	 holistic	 approach	 common	 to	 both
examples.	Of	course,	in	the	procedural	version,	there	are	more	differences	specific	to	the
language.

EMBEDDED	SQL	VERSUS	DYNAMIC
SQL	–	ANOTHER	DILEMMA!
I	remember	even	now,	after	so	many	years,	when	I	first	saw	the	use	of	dynamic	SQL!	If
was	very	fascinating	for	me,	at	that	time,	to	see	how	you	can	concatenate	and	how	you	can
add	 more	 and	 more	 filter	 conditions	 to	 a	 string.	 The	 filter	 conditions	 were	 dynamic
generated	 by	 the	 user,	 so	 there	 were	 good	 reasons	 for	 the	 use	 of	 dynamic	 SQL.	 The
context	was	 one	 of	 a	 report,	 the	 conditions	 in	 the	 report	 contains	many	parameters,	 the
filter	 conditions.	 The	 string	 continues	 to	 grow	 and	 grow,	 becoming	 a	 nice	 and	 relevant
SQL	statement.	Finally,	in	the	end,	when	the	concatenation	ends,	the	string	was	executed
and	the	results	set	was	displayed.	This	was	my	first	scenario	of	the	use	of	dynamic	SQL.
There	 are	 many	 good	 reasons	 for	 the	 use	 of	 dynamic	 but	 I	 would	 say	 that	 the	 most
common	one,	and	the	most	rational,	is	the	one	when	there	are	uncertainties	at	run	time.

For	example,	sometimes	you	want	to	query	a	table.	You	don’t	know	exactly	which
table:	 it	can	be	one	or	 the	other	depending	on	 the	execution	context.	You	need	 to	select
from	the	unknown	and	that	 is	not	quite	normal	and	common,	 is	 it?	In	these	cases,	when
uncertain	things	are	waiting	at	the	door	of	execution,	you	may	consider	the	use	of	dynamic
SQL.

As	you	know,	for	any	possible	reader	not	exactly	familiarized	with	the	distinction,
there	are	two	types	of	SQL.	The	SQL	can	be	embedded	or	dynamic.	An	embedded	SQL	is
the	 normal	 SQL,	 a	 clear	 and	 fair	 statement	 or	 set	 of	 statements,	 written	 as	 such	 and
interpreted	as	such,	clearly	compiled	and	determined	before	 the	execution.	 If	everything
goes	 fine	with	 the	compilation	step	and	 the	syntax	of	 the	statement,	 the	semantic	of	 the
statement	are	checked	and	the	primary	and	basic	elements	of	the	statement	are	consistently
determined.	Afterwards,	at	execution,	other	surprises	or	reasons	for	error	might	occur	but
all	these	are	part	of	the	execution	context.	This	is	the	default	type	of	SQL,	the	embedded
SQL.	Normally,	a	good	SQL	developer	will	try	to	use	embedded	SQL	as	much	as	he	can
and	 he	 should	 be	 confident	 in	 the	 separation	 between	 compilation	 phase	 and	 execution
phase,	 as	 two	 distinct	 phases	 that	 should	 be	 analyzed	 separately	 and	 chronologically.	 If
nothing	is	certain	at	run	time,	embedded	SQL	is	an	absolute	favorite.	Very	rarely,	you	can
imagine	reasons	for	something	else	if	everything	is	clear	and	known	at	run	time.

Still,	sometimes	the	execution	may	contain	questions.	Let’s	see	the	example	when
we	need	to	select	in	a	table,	or	update	the	table	in	a	certain	way.	We	don’t	know	the	name
of	the	table	when	we	build	the	logic:	that	one	might	change	at	run	time.	In	these	cases,	we
build	 a	 string	 containing	 all	 the	 known	 elements	 of	 the	 statement	 and	 the	 unknown
elements	of	 the	 statements	 specified	as	parameter	 for	 the	 string.	After	 that,	 the	 string	 is
generated	 it	 is	 executed.	 The	 string	 will	 become	 known	 at	 execution	 time	 so	 the
compilation	and	execution	will	be	made	at	the	execution	time.	This	is	a	reason	for	concern
because	the	execution	will	take	the	burden	of	compilation	and	its	impact	may	be	infinitely
more	severe.	This	is	the	main	reason	for	which	the	use	of	dynamic	SQL	is	to	be	avoided.	It
is	always	better	to	solve	the	basic	problems	of	parsing	before	execution.	No	one	wants	to
check	the	syntax	and	no	one	wants	to	check	the	semantics	of	the	statements	at	execution
time.

I	remembered	some	of	my	vacations	with	my	family.	Most	of	 the	preparations	for

the	 trip	 should	 be	 made	 at	 least	 in	 the	 previous	 day	 of	 our	 departure.	 I	 don’t	 want	 to
imagine	what	would	happen	if	we	would	have	to	prepare	everything	in	the	morning	of	our
departure.	 I	would	need	 to	be	 twice	as	concentrated	 to	be	sure	I	do	not	 forget	anything!
Things	are	Similar	with	the	use	of	dynamic	SQL,	to	a	certain	degree!

In	one	of	the	data	migration	interfaces	I	used	to	work	on	it	happened	to	have	large
lists	 of	 attributes	 that	 should	 have	 been	 updated	 quite	 often.	 The	 statement	 was	 pretty
much	 the	 same	 but	 it	 contained,	 of	 course,	 different	 variables,	 like	 the	 attributes	 to	 be
updated.	 Therefore,	 it	 was	 a	 repetitive	 code	 and	 this	 could	 have	 been	 transformed	 in
dynamic	SQL.	Still	 I	would	rather	prefer	 to	avoid	 this.	 I	continued	to	use	dynamic	SQL
but	 I	 kept	 that	 separately	 in	what	 I	 named	 a	 list	 of	SQL	generators.	That	 list	 contained
many	 strings	 that	 concatenate	 constants	 like	 keywords	 and	 variables	 like	 columns	 from
tables.	 I	 had	 tens	of	 lists	 and	 I	kept	 them	safely	but	 I	 did	not	 add	 them	 in	 the	 software
application.	These	lists	were	executed	and	the	content	of	the	lists	were	sets	of	embedded
SQL	statements.	These	statements	were	copied	into	the	software	applications.	In	this	way,
the	logic	was	consistent	and	classic	containing	only	embedded	SQL.	If	I	was	to	have	an
error,	I	knew	exactly	where	it	was	and	this	was	another	reason	for	embedded	SQL.

Finding	and	 locating	 the	errors	when	using	dynamic	 is	an	extremely	difficult	 task
and	you	need	to	dig	like	a	marathon	runner	to	get	the	exact	place	of	the	error	and	start	the
debug	activity.	If	anything	changes,	I	can	use	the	SQL	generators	and	generate	everything
again.

So	this	is	a	good	example	where	dynamic	SQL	is	a	good	choice,	when	is	acting	like
a	shadow	or	like	a	ninja	worrier,	in	the	back	of	the	actual	code.	No	one	knows	it	exists!	I
believe	it	is	better	this	way!

The	 topic	 of	 what	 is	 more	 important:	 the	 clarity	 of	 the	 code	 or	 the	 length?	 For
example,	 you	 have	 50	 attributes	 of	 a	 certain	 type	 in	 a	migration	 system	 that	 should	 be
updated,	some	of	them	depending	on	the	changes.	You	can	write	the	50	similar	statements
in	one	string	and	execute	that	string	in	a	cursor.	The	length	of	the	code	will	be	very	small,
the	clarity	and	readability	will	be	at	the	lowest	level.	The	second	solution	is	to	continue	to
keep	that	string	but	separately	in	a	file	with	all	sort	of	strings	like	this,	I	called	them	SQL
generators.	You	will	execute	the	string	and	you	will	have	50	statements	that	you	will	copy
in	the	logic.	The	length	of	the	procedure	will	be	large	and	the	clarity	and	readability	at	the
maximum	level.

The	difference	between	having	dynamic	SQL	versus	embedded	SQL.

If	 there	 are	 no	questions	 at	 execution	 time	 these	 are	 alternatives	 solutions.	 In	my
opinion,	the	increased	length	of	a	stored	procedure	is	not	an	important	matter.	I	find	this
even	completely	irrelevant	if	I	am	thinking	at	the	clarity	we	have	with	everything	clearly
written.	Apart	from	that,	if	you	have	an	error	mechanism	you	can	follow	everything	and
catch	everything	without	any	doubts.

Let’s	see	one	example.	Let’s	imagine	we	have	more	reporting	tables	not	just	English
and	French	but	50	reporting	 tables.	You	want	 to	generate	periodically	 the	data	 in	 the	50
tables	 from	 the	 normalized	 table.	 You	 can	 think	 at	 the	 solution	 of	 writing	 a	 stored
procedure	where	 to	 update	 the	 50	 tables	 and	 use	 embedded	SQL	or	 you	 can	 think	 at	 a
solution	to	write	a	string	and	execute	it	in	a	cursor	changing	the	name	of	the	country	and

populate	 every	 country	 from	 the	 50	 tables	 in	 the	 cursor.	 In	 the	 first	 case,	 you	 need	 to
maintain	 the	file	with	 the	set	of	50	embedded	SQL	statements,	new	countries	are	added
and	the	file	should	be	maintained.	It	is	some	work	to	be	done.	Using	dynamic	SQL,	you
don’t	 need	 to	 do	 anything,	 but	 you	 lose	 the	 clarity	 and	 the	 significance	 of	 the	 code.
However,	you	have	a	third	option:	to	use	these	strings	as	part	of	the	backup	logic	or	you
can	name	 it	metadata	 logic,	 to	use	 these	 strings	as	SQL	generators	and	execute	 them	 to
generate	the	real	files	of	the	software.

Before	that,	let’s	add	one	column	to	the	table	Languages.	Let’s	add	some	data	too.
Let’s	see	the	changes	below:

Code	example	31:	Add	metadata	information.

--	Execute	Code	example	05	before	apply	these	changes.

ALTER	TABLE	Languages

ADD	Language_Table_Name	VARCHAR(30);

UPDATE	Languages

SET	Language_Table_Name	=	‘English_European_Countries’

WHERE	Language_Id	=	2;

UPDATE	Languages

SET	Language_Table_Name	=	‘French_European_Countries’

WHERE	Language_Id	=	3;

As	you	know,	we	have	two	reporting	tables:	one	for	the	English	language	and	one
for	 the	 French	 language.	 These	 tables	 are	 linked	 to	 the	 language	 so	 I	 will	 add	 this
information	 to	 the	 languages	 tables	 as	 you	 can	 see	 above.	 More	 reporting	 tables	 will
follow:	this	information	will	be	updated	in	the	Languages	table.	If	tomorrow	the	reporting
table	 for	 Spanish	 will	 be	 made,	 the	 name	 of	 the	 table	 will	 populate	 the	 row	 with	 the
Spanish	 language.	 In	 this	way,	 the	 table	 languages	will	 contain	 both	 data	 and	metadata
information	and	will	double	its	utility.	Try	to	rebuild	the	data	in	Countries_Languages	and
add	the	initial	script	and	the	changes	reflected	in	the	initial	script	(Code	example	05).

The	update	above	allows	us	to	see	data	and	metadata	information	in	one	place	and
allows	us	to	use	dynamic	SQL.	The	table	Languages	contains	the	rows	2	and	3	with	the
values	English_European_Countries	 and	French_	European_Countries.	These	 are	 values
in	 the	“business”	 table	 so	 these	are	data.	On	 the	other	hand,	 these	values	 correspond	 to
some	objects	 in	 the	database,	 respectively	 to	 the	 tables	with	 the	same	names.	Therefore,
these	are	metadata.	This	is	a	common	scenario	for	dynamic	SQL,	trying	to	generate	your
own	set	of	metadata	and	use	 that	one	 for	various	purposes.	The	 set	of	 custom	metadata
offers	the	advantage	that	allows	the	developer	to	generate	SQL	logic,	especially	if	things
are	repetitive.	This	logic	can	be	hidden	in	dynamic	SQL	or	can	be	revealed	in	embedded
SQL	and	the	mechanism	for	embedded	SQL	can	be	separated	in	a	parallel	logic.	I	am	the
promoter	 of	 this	 second	 approach,	 use	 metadata	 and	 dynamic	 SQL	 in	 a	 parallel	 layer,
generate,	 and	 use	 embedded	 SQL.	At	 execution	 time,	 the	 software	 application	will	 see
exclusively	embedded	SQL.

Let’s	move	back	 to	 the	example.	After	 recreating	 the	 three	base	 table	again	using
the	script	in	Code	example	05	let’s	see	one	classic	example	of	dynamic	SQL	in	action.

Code	example	32	Holistic	with	dynamic	SQL	for	SQL	Server

CREATE	PROCEDURE	Holistic_Full_Country_Dynamic

AS

DECLARE	@v_Language_Id	INT;

DECLARE	@v_Language_Name	VARCHAR(50);

DECLARE	@v_Language_Table_Name	VARCHAR(30);

DECLARE	@v_SQL_Statement	NVARCHAR(1000);

DECLARE	c_Get_Languages	CURSOR	FOR

SELECT	Language_Id,	Language_Name,	Language_Table_Name

FROM	Languages

WHERE	Language_Table_Name	IS	NOT	NULL;

BEGIN

OPEN	c_Get_Languages

FETCH	NEXT	FROM	c_Get_Languages	INTO	@v_Language_Id,	@v_

Language_Name,	@v_Language_Table_Name

WHILE	@@FETCH_STATUS	=	0

BEGIN

SET	@v_SQL_Statement	=	‘DELETE	‘	+	@v_Language_Table_Name;

EXECUTE	sp_executesql	@v_SQL_Statement

SET	@v_SQL_Statement	=	‘INSERT	INTO	‘	+	@v_Language_Table_	Name	+	‘	(‘	+	@v_Language_Name	+

‘_CL_Id,	Country_Code,	Country_Name,	Language_Category)’	+	‘	SELECT	ROW_NUMBER()	OVER	(ORDER	BY

c.Country_Code,	cl.Language_Category)	AS	CL_Id,	c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l	ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	‘’’	+	@v_Language_Name	+	‘’’’;

EXECUTE	sp_executesql	@v_SQL_Statement

FETCH	 NEXT	 FROM	 c_Get_Languages	 INTO	 @v_Language_Id,	 @v_	 Language_Name,

@v_Language_Table_Name

END

CLOSE	c_Get_Languages

DEALLOCATE	c_Get_Languages

END

GO

This	 is	 dynamic	 SQL!	 It	 is	 a	 special	 kind	 of	 programming	 and	 it	 has	 a	 certain
degree	 of	 popularity.	 I	was	 somehow	 a	 fan	 of	 dynamic	 SQL	 in	my	 beginnings	 but	 not
anymore.	Anyway,	 dynamic	 SQL	 is	 very	 useful	 and	 of	 great	 help	 in	 certain	 situations.
Let’s	 look	at	 the	code:	 it	 seems	a	bit	 like	a	Morse	code,	 isn’t	 it?	You	should	be	able	 to
guess	 and	 know	what	 is	 behind	 to	 be	 able	 to	 understand,	 it	 has	 a	 lack	 of	meaning.	Of
course,	 you	 can	 always	 print	 the	 strings	 before	 executing	 anything	 and	 you	 can	 try	 to
understand	the	meanings,	and	this	is	what	we	all	do	when	we	have	issues.

In	this	example,	we	have	just	two	reporting	tables.	We	generated	and	executed	one
delete	 and	 one	 insert	 statement	 for	 two	 tables.	 This	 is	 not	 a	 serious	 economy	 in	 code.
However,	 you	 should	 imagine	we	 have	 20	 reporting	 tables	 and	 you	 generate	 one	 insert
statement	and	one	delete	statement	instead	of	twenty.	The	amount	of	code	will	be	reduced
to	a	maximum	 level.	The	procedure	will	have	20	 lines	 instead	of	200	 lines.	This	 is	one
consequence	of	dynamic	SQL.	The	length	of	 the	code	is	multiple	 times	smaller	but	also
the	meaning.	Actually,	the	use	of	dynamic	SQL	minimizes	the	length	of	the	code	and	the
length	of	 the	meaning.	Not	too	many	people	will	understand	what	 is	 there,	many	people
will	 wonder	 and	 try	 to	 guess,	 start	 printing	 various	 strings,	 the	 final	 string	 or
intermediates:	 it	 will	 be	 a	 battle	 for	 understanding	 that	 will	 take	 some	 time	 for	 new
programmers	working	in	dynamic	SQL.	What	 is	more	important	 in	a	procedure,	what	 is

more	 important	when	you	are	 looking	at	 the	code?	 Is	 it	 the	 length	of	 the	code?	Are	we
happy	to	see	one	procedure	with	10	lines	but	no	meaning?	Alternatively,	are	we	happy	to
see	one	procedure	with	100	 lines	but	with	a	clear	meaning?	Of	course,	 those	 things	are
also	relative	to	each	ones	experience,	there	are	no	general	answers	to	these	questions.

Now	 if	 we	 will	 execute	 the	 procedure	 above	 we	 will	 populate	 the	 French	 and
English	reporting	tables.	You	will	see	the	same	data	as	in	Chapter	05	after	executing	the
procedure	 Atomic_Full_Transfer_Country	 for	 both	 parameters	 English	 and	 French	 (see
the	values).	There	are	five	English	countries	and	two	French	ones.

The	programmer	can	choose	to	use	embedded	SQL	and	to	write	in	white	and	black
everything,	 to	 explicitly	 specify	 all	 the	 tables	 and	 objects.	 The	 logic	 will	 contain
everything.	With	 embedded	SQL	you	 see	what	 you	 execute,	 you	 understand	 everything
and	you	can	catch	the	errors,	if	any.	The	handle	errors	procedure	generator	will	take	you	to
the	error	exactly	and	you	can	safely	debug	everything.	With	dynamic	SQL,	you	need	 to
guess	 and	 it	 is	 extremely	difficult	 sometimes	 to	 identify	 the	place	with	 the	error,	 this	 is
another	disadvantage	of	dynamic	SQL.

However,	 the	use	of	dynamic	SQL	can	be	extremely	useful	 sometimes	even	apart
from	the	classic	situation	with	uncertain	things	at	run	time.	That	case	is	classic	and,	if	it
cannot	 be	 avoided,	we	 are	 somehow	 forced	 to	 use	 dynamic	 SQL.	Apart	 from	 that,	 the
dynamic	SQL	can	be	used	in	a	parallel	layer,	let’s	call	it	generator.

Let’s	take	the	example	above.	Let’s	change	that	code	and	let’s	remove	the	essential
call	to	the	string,	the	sp_executesql	and	replace	it	with	a	simple	print.	For	simplicity,	I	will
just	print	 the	 string	 instead	of	 saving	 it	directly	 for	example	 in	a	custom	metadata	 table
with	SQL	generators.

Now	the	new	procedure	will	be	similar	with	 the	previous	one	but	with	one	major
difference.	Let’s	see	it	first.

Code	example	33	SQL	generator	for	SQL	Server

CREATE	PROCEDURE	Holistic_Full_C_Generator

AS

DECLARE	@v_Language_Id	INT;

DECLARE	@v_Language_Name	VARCHAR(50);

DECLARE	@v_Language_Table_Name	VARCHAR(30);

DECLARE	@v_SQL_Statement	NVARCHAR(1000);

DECLARE	c_Get_Languages	CURSOR	FOR

SELECT	Language_Id,	Language_Name,	Language_Table_Name

FROM	Languages

WHERE	Language_Table_Name	IS	NOT	NULL;

BEGIN

OPEN	c_Get_Languages

FETCH	 NEXT	 FROM	 c_Get_Languages	 INTO	 @v_Language_Id,	 @v_	 Language_Name,

@v_Language_Table_Name

WHILE	@@FETCH_STATUS	=	0

BEGIN

SET	@v_SQL_Statement	=	‘DELETE	‘	+	@v_Language_Table_Name;

PRINT	@v_SQL_Statement

SET	 @v_SQL_Statement	 =	 ‘INSERT	 INTO	 ‘	 +	 @v_Language_Table_Name	 +	 ‘	 (‘	 +	 @v_Language_Name	 +

‘_CL_Id,	Country_Code,	Country_	Name,	Language_Category)’	+	‘	SELECT	ROW_NUMBER()	OVER	(ORDER	BY

c.Country_Code,	 cl.Language_Category)	 AS	 CL_Id,	 c.Country_Code,	 c.Country_Name,

cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l	ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	‘’’	+	@v_Language_Name	+	‘’’’;

PRINT	@v_SQL_Statement

FETCH	NEXT	FROM	c_Get_Languages	INTO	@v_Language_Id,	@v_Language_Name,	@v_Language_Table_Name

END

CLOSE	c_Get_Languages

DEALLOCATE	c_Get_Languages

END

GO

The	 difference	 is	 the	 difference	 between	 a	 print	 instruction	 and	 an	 execute
instruction.	 The	 same	 string	 is	 printed	 instead	 of	 being	 executed.	 Consequently,	 the
difference	 is	 actually	 huge.	 The	 previous	 procedure	 was	 named
Holistic_Full_Country_Dynamic	and	this	one	is	called	Holistic_	Full_C_Generator.	Now
we	will	execute	 the	 last	procedure	and	we	will	display	 the	data	 in	a	new	code	example.
This	new	code	example	will	be	actually	a	new	logic,	the	logic	itself,	the	logic	I	consider
the	one	that	should	be	used	everywhere,	the	embedded	SQL.	The	printed	string	is	the	text
that	should	be	executed.	Instead	of	executing	the	string	in	dynamic	SQL,	I	will	generate
the	text	with	embedded	SQL.	That	text	will	actually	be	the	effective	logic.	So	let’s	see	the
execution	results,	after	calling	the	last	procedure.

Code	example	34	The	execution	results	for	Holistic_Full_C_	Generator

DELETE	English_European_Countries

INSERT	 INTO	 English_European_Countries	 (English_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	 ROW_NUMBER()	 OVER	 (ORDER	 BY	 c.Country_Code,	 cl.Language_Category)	 AS	 CL_Id,

c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l	ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	‘English’

DELETE	French_European_Countries

INSERT	 INTO	 French_European_Countries	 (French_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	 ROW_NUMBER()	 OVER	 (ORDER	 BY	 c.Country_Code,	 cl.Language_Category)	 AS	 CL_Id,

c.Country_Code,	c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	‘French’

Now	this	is	amazing.	What	we	have	here	is	so	clear	and	readable!	Everyone	can	see
and	understand.	If	I	have	an	error	that	one	will	be	identified	correctly	very	fast,	after	the
line	 id	 and	 I	will	 know	 exactly	where	 to	 go	 and	 debug.	 The	 code	 is	 pure	 SQL,	 native
database	code,	the	same	code	as	before	but	the	difference	is	that	now	the	code	is	visible
and	not	hidden.	What	do	I	need	to	do?	Take	this	execution	result	and	add	it,	create	a	new
procedure	 and	 store	 that	 in	 your	 database.	 That	 will	 be	 the	 real	 procedure,	 containing
embedded	SQL.	Let’s	display	it!

Code	example	35	Holistic	with	embedded	SQL	for	SQL	Server

CREATE	PROCEDURE	Holistic_Full_Country_Embedded

AS

DELETE	English_European_Countries;

INSERT	 INTO	 English_European_Countries	 (English_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	 ROW_NUMBER()	 OVER	 (ORDER	 BY	 c.Country_Code,	 cl.Language_Category)	 AS	 CL_Id,

c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	‘English’;

DELETE	French_European_Countries;

INSERT	 INTO	 French_European_Countries	 (French_CL_Id,	 Country_Code,	 Country_Name,

Language_Category)

SELECT	 ROW_NUMBER()	 OVER	 (ORDER	 BY	 c.Country_Code,	 cl.Language_Category)	 AS	 CL_Id,

c.Country_Code,

c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c	ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	‘French’;

GO

This	is	the	real	procedure	and	the	real	logic	that	should	be	displayed	and	executed.
The	 approach	 is	 purely	 holistic	 and	 SQL,	 the	 reporting	 tables	 are	 updated	 from	 the
normalized	system:	everything	is	clear	and	straightforward.	If	tomorrow	we	add	two	more
reporting	tables,	we	have	two	options:	I	can	add	the	new	two	insert	and	delete	statements
directly,	 or	 I	 can	 simply	 update	 the	 custom	 metadata	 information	 and	 execute	 the
generator	again.	I	can	copy	the	text	into	the	procedure	and	recreate	the	logic.	This	is	my
recommended	way	of	work	for	these	kinds	of	situations.

The	use	of	dynamic	SQL	is	great	and	it	helps	us	solve	some	delicate	situations	like
the	one	when	you	want	to	select	from	a	table	but	the	name	of	the	table	is	unknown.	Now	I
want	 to	 generate	 the	 English	 countries	 and	 tomorrow	 I	want	 the	 French	 countries.	 The
decision,	the	English	or	French	language	or	anything	else,	is	taken	somehow	at	run	time
by	the	execution	user.	In	these	scenarios,	dynamic	SQL	is	a	good	decision.	However,	in	a
scenario	where	we	 simply	have	 repetitive	 code	 and	when	we	have	 a	 list	 of	 actions	 that
should	be	generated,	like	a	list	of	insert	statements,	we	can	use	dynamic	SQL	in	a	parallel
layer	called	generator.	That	generator	will	be	executed	periodically	and	will	be	 the	base
for	 our	 effective	 code.	 The	 effective	 code	 will	 be	 pure	 embedded	 SQL	 with	 all	 the
advantages	of	embedded	SQL.	This	is	the	scenario	that	I	recommend	and	consider	the	best
in	this	context.

OTHERS	HOLISTIC	SOLUTIONS:	THE	TEMPORARY	TABLE,	EXPLICIT
OR	IMPLICIT	LIKE	WITH	A	CLAUSE
We	will	move	back	 to	 the	opposition	between	 the	atomic	approach	and	 the	holistic	one.
The	atomic	style	is	defined	in	most	of	the	cases	by	the	use	of	one	or	more	cursors,	by	the
use	 of	 variables	 or	 records	 or	 anything	 similar,	 where	 the	 data	 in	 the	 cursor	 is	 stored
atomically,	 by	 the	 loop	 through	 the	 cursor	 and	whatever	manipulation	 is	 required.	 This
strategy	and	style	 is	adopted	by	many	application	developers	 that	are	not	 fully	aware	of
the	fact	 that	 inside	a	 relational	database	 the	manipulation	should	be	done	 in	most	of	 the
cases	per	data	sets,	in	a	holistic	manner.	My	suggestion	in	most	of	the	examples	is	that	the
holistic	approach	means	solving	the	problem	by	using	a	simple	SQL	statement.	By	simple,
I	 do	 not	mean	 that	 any	 solution	 should	 be	 very	 simple	 and	 actually	 sometimes,	 a	 SQL
statement,	 like	a	select	statement,	can	be	very	complicated	and	can	contain	even	 tens	or
hundreds	of	lines.	The	code	length,	the	simplicity	or	complexity	of	the	statement	is	not	an
argument	in	itself	and,	very	often,	the	holistic	solution	is	better	than	the	atomic	approach.
Still,	sometimes,	a	simple	SQL	statement	is	not	enough	to	solve	the	problem.	Sometimes
the	data	need	to	be	manipulated	and	intermediary	results	should	be	stored	and	set	before
getting	 the	 result.	 Sometimes,	 to	 be	 able	 to	 reach	 the	 result,	 you	 need	 to	 intermediary
update	the	data,	to	generate	all	kinds	of	identifiers,	to	do	whatever	concatenations,	to	do
whatever	calculations.	There	are	so	many	possible	reasons	for	this	data	manipulation.	In
these	 situations,	 a	 simple	 SQL	 statement	will	 not	 be	 enough	 to	 solve	 the	 problem	 in	 a
holistic	manner.	It	is	even	possible	to	be	forced	to	use	an	atomic	solution	and	to	go	to	the
cursor	and	to	the	loop	within	the	cursor.	Nevertheless,	before	following	that	approach,	we
can	try	something	else.	We	can	try	to	use	various	holistic	techniques	for	data	manipulation
before	 choosing	 the	 cursor.	 Some	 examples	 are	 the	 temporary	 tables,	 either	 explicit	 or
implicit.

The	temporary	table	is	a	kind	of	table	very	dear	to	SQL	Server	developers	and	not
so	common	for	Oracle	developers.	There	are	some	differences	between	the	statuses	of	the
temporary	 table	 in	 the	 two	 systems.	 This	 is	 not	 relevant	 in	 our	 context.	 The	 temporary
table	is	a	kind	of	table	that	exists	in	any	database	system,	like	Oracle,	SQL	Server,	DB2,
PostgreSQL	and	any	other.	This	is	one	holistic	method	for	storing	intermediates	in	a	data
manipulation	and	is	often	an	alternative	to	the	cursor	facility	and	to	the	atomic	approach.
The	temporary	table	can	be	explicit	or	implicit,	if	we	consider	the	“with	clause”,	more	and
more	used	 in	 the	database	 software	development.	The	 temporary	 table	generated	by	 the
“with	clause”	is	very	common	nowadays	and	offers	great	advantages,	one	of	them	being
exactly	this	one,	avoiding	the	atomic	approach	for	a	better	performance	and	a	holistic	data
manipulation.

During	one	of	my	projects,	I	was	in	the	position	to	improve	performance.	I	already
mentioned	that,	and	I	need	to	repeat	because	is	related	to	my	actual	topic.	There	was	a	nice
and	 big	 cursor,	 like	Big	Brother.	 This	Big	Brother	 drives	 the	 entire	 process	 of	 a	 report
generation.	To	be	able	to	generate	that	report,	a	lot	of	intermediates	results	were	generated
before	 the	 result.	 Of	 course,	 the	 Big	 Brother	 was	 extremely	 slow	 and	 the	 report	 was
terrible.	 After	 some	 deliberation,	 I	 decided,	 as	 almost	 always	 when	 try	 to	 improve
performance,	that	a	holistic	solution	was	required.	A	simple	SQL	was	not	possible,	due	to
the	fact	that	the	data	to	be	manipulated	required	updates.	Therefore,	I	needed	to	search	for

something	else.

The	“with	clause”	is	a	great	feature.	I	tried	to	use	that	first,	but	it	was	not	enough.
So	finally,	I	used	a	classic	temporary	table	instead.	The	atomic	approach	was	used	but	not
with	a	direct	SQL	but	with	a	classic	 temporary	 table.	The	 table	was	populated	 first	 and
updated	afterwards	based	on	certain	conditions.	The	difference	in	performance	against	the
cursor	was	huge.	Even	if	you	use	a	normal	table	and	not	a	temporary	table,	the	difference
is	impressive	comparing	with	the	cursors	and	the	atomic	approach.	I	know	that	temporary
tables	 are	 not	 loved	 by	 everyone!	 There	 are	 voices	 against	 them!	 I	 do	 not	 intend	 to
consider	them	more	than	they	should	be.	However,	comparing	with	the	atomic	approach,
the	temporary	table	is	a	better	solution	because	it	works	holistically.	Not	all	the	time	and
not	 in	 any	 situation	 but	 in	most	 of	 the	 cases	 I	 strongly	 believe	 is	 a	 better	 solution.	 In
addition,	by	the	way,	the	solution	that	I	used	and	where	the	temporary	table	worked	much
better	than	the	atomic	approach	it	was,	surprisingly,	in	an	Oracle	environment	and	not	in
the	classic	SQL	Server	environment.

We	 all	 know	 that	 cursors	 in	 Oracle	 have	 a	 good	 performance.	 Despite	 all	 these
considerations,	 the	 atomic	 approach	 remains	 an	 abnormal	 style	 that	 should	 not	 be	 used
unless	a	holistic	solution	is	available.	At	least	this	is	my	opinion	and	this	is	what	I	try	to
prove	everywhere	in	this	book.

Another	holistic	feature	is	the	table	function,	or	a	type	of	function	that	returns	a	data
set	or	a	similar	holistic	object.	These	functions	are	available	in	many	database	systems	and
these	 are	 a	 better	 alternative	 than	 scalar	 functions	 executed	 in	 cursors.	 We	 already
discussed	 about	 that,	 I	want	 to	 introduce	 another	 example	of	 performance	 improvement
that	I	did,	now	in	a	SQL	Server	environment.

There	was	a	complex	logic	of	data	transfer	between	two	systems.	It	was	that	kind	of
specific	application	very	suitable	for	the	holistic	approach.	In	this	logic,	one	portion	was
very	expensive	with	a	very	poor	performance.	Analyzing	the	logic	I	noticed	the	procedural
and	atomic	style,	and	how	everything	was	written	in	cursors,	a	variety	of	scalar	functions
were	defined	and	called	everywhere	in	those	cursors.	The	performance	was	a	disaster	and,
of	 course,	 any	 improvement	 of	 any	 type	 was	 not	 possible,	 except	 for	 the	 rewrite
mechanism,	of	course!	The	rewrite	procedure	is	very	expensive,	whenever	you	rewrite	the
logic	 you	 need	 to	 continuously	 check	 the	 results,	 not	 just	 the	 final	 but	 also	 the
intermediates.	It	is	a	difficult	work,	but	the	satisfaction	when	you	are	done	is	enormous!
So	what	have	I	done?	I	replaced	almost	all	the	scalar	functions	and	the	cursors	with	a	table
function.	The	table	function	returns	a	data	set,	like	a	temporary	table.	Instead	of	updating
all	the	items	in	the	cursor	several	times	using	various	scalar	functions,	I	updated	the	table
to	be	returned	in	the	table	function.	Instead	of	acting	atomically,	I	acted	holistically.	That
was	the	big	difference.	Once	more,	the	difference	in	performance	was	impressive.

These	 are	 just	 two	 examples	 of	 situations	 where	 the	 holistic	 approach	 was
implemented	 using	 other	 types	 of	 objects	 like	 temporary	 tables,	 explicit	 or	 implicit,	 or
table	 functions	 instead	 of	 cursors	 with	 scalar	 functions.	 The	 first	 type	 of	 solution
whenever	you	try	to	replace	an	atomic	solution	is	to	try	to	use	a	simple	SQL	statement.	It
will	 work	 more	 often	 than	 you	 expect.	 If	 one	 simple	 SQL	 statement	 cannot	 solve	 the
problem,	 because	 the	 data	 set	 should	 be	 updated	 somehow	 and	 the	 simple	 SQL	 select
statement	 is	 not	 sufficient,	 there	 are	 others	 possible	 solutions	 like	 the	 ones	 specified

above.	 The	 atomic	 approach	will	 still	 be	 used	 if	 the	 row-by-row	 functionality	 is	 really
requested	by	the	logic.	This	will	happen	but	very	rarely,	more	rarely	than	you	can	imagine.

Let’s	see	one	more	example.

We	will	go	back	to	the	set	of	product	tables,	the	products	and	their	descriptions	(see
Code	example	21).	Let’s	see	the	business	description.

We	 want	 to	 calculate	 the	 quantities	 per	 type	 of	 the	 product	 according	 to	 an
algorithm.	For	each	product,	if	the	type	is	C,	I	am	reading	the	flag.	If	the	flag	is	set	to	one
(1),	I	will	take	the	quantity	squared	and	if	the	flag	is	zero	(0)	I	will	take	the	double	of	the
quantity.	If	the	type	is	D,	I	will	look	again	at	the	flag	and	I	will	take	the	quantity	squared
minus	simple	quantity	if	the	flag	is	positive	and	I	will	take	the	triple	quantity	if	the	flag	is
zero.

The	same	question	again,	do	we	see	this	exercise	atomically?	Are	we	already	riding
on	the	row	like	John	Wayne	in	the	old	times?	Let’s	see	the	pure	atomic	solution,	although
it	is	quite	clear	that	this	can	be	easily	avoided.

Before	 executing	 the	 procedure,	 reinitialize	 the	 list	 of	 products	 and	 types.	 This
means	run	the	statements	in	Code	example	22	again	not	before	deleting	the	products	and
the	associated	types.

Let’s	see	the	atomic	solution	in	PL	SQL.
Code	example	36:	Atomic	get	the	default	quantity	per	type	Oracle

CREATE	PROCEDURE	Atomic_Get_Qtty_Per_Type

AS

v_Product_Type_Code	VARCHAR(5);

v_Make_Flag	INT;

v_Default_Quantity	INT;

v_First_Letter_Type	CHAR(1);

v_Current_Qtty	INT;

v_Current_Qtty_C	INT;

v_Current_Qtty_D	INT;

CURSOR	c_Get_Products_Qtty	IS

SELECT	pt.Product_Type_Code,	p.Make_Flag,	p.Default_Quantity

FROM	Product_Types	pt	INNER	JOIN	Products	p

ON	(p.Product_Type_Id	=	pt.Product_Type_Id);

BEGIN

v_Current_Qtty_C	:=	0;

v_Current_Qtty_D	:=	0;

v_Current_Qtty	:=	0;

OPEN	c_Get_Products_Qtty;

LOOP

FETCH	c_Get_Products_Qtty

INTO	v_Product_Type_Code,	v_Make_Flag,	v_Default_Quantity;

EXIT	WHEN	c_Get_Products_Qtty%NOTFOUND;

v_First_Letter_Type	:=	SUBSTR(v_Product_Type_Code,	1,	1);

IF	v_First_Letter_Type	=	‘C’	THEN

IF	v_Make_Flag	=	1	THEN

v_Current_Qtty	:=	v_Default_Quantity	*	v_Default_Quantity;

ELSIF	v_Make_Flag	=	0	THEN

v_Current_Qtty	:=	2	*	v_Default_Quantity;

END	IF;

ELSE

IF	v_Make_Flag	=	1	THEN

v_Current_Qtty	:=	v_Default_Quantity	*	v_Default_

Quantity	-	v_Default_Quantity;

ELSIF	v_Make_Flag	=	0	THEN

v_Current_Qtty	:=	3	*	v_Default_Quantity;

END	IF;

END	IF;

IF	v_First_Letter_Type	=	‘C’	THEN

v_Current_Qtty_C	:=	v_Current_Qtty_C	+	v_Current_Qtty;

ELSE

v_Current_Qtty_D	:=	v_Current_Qtty_D	+	v_Current_Qtty;

END	IF;

END	LOOP;

CLOSE	c_Get_Products_Qtty;

DBMS_OUTPUT.PUT_LINE	(‘The	total	default	quantity	for	the	products	with	C	type	is	‘	||

TO_CHAR(v_Current_Qtty_C));

DBMS_OUTPUT.PUT_LINE	(‘The	total	default	quantity	for	the

products	with	D	type	is	‘	||	TO_CHAR(v_Current_Qtty_D));

END;

/

This	solution	is	very	traditional	and	I	believe	there	is	no	need	for	any	explanation.
The	same	procedural	logic	applies,	for	each	row	in	the	data	set	with	the	list	of	products,
we	check	the	type	if	is	C	or	D,	then	we	look	at	the	flag	and,	depending	on	the	value,	we
calculate	one	quantity	or	another.	Using	a	kind	of	global	variable	 to	 the	cursor,	actually
two,	one	for	C	and	one	for	D,	we	add	the	current	quantities	to	either	C	or	D.	Finally,	the
two	global	variables	will	store	the	quantities.

After	the	execution	of	the	procedure,	you	will	obtain	the	following	results:
anonymous	block	completed

The	total	default	quantity	for	the	products	with	C	type	is	646	The	total	default	quantity	for	the

products	with	D	type	is	30

It	is	clear	that	this	solution	will	vary	based	on	the	database	system.	Even	if	it	would
be	 similar,	 there	 would	 be	 serious	 differences	 between	 Oracle,	 SQL	 Server	 DB2	 and
PostgreSQL	for	example.	The	procedural	language	is	different	and	you	need	to	familiarize
with	 one	 or	 another.	 I	 continue	 to	 say	 that	 this	 matter	 is	 not	 the	 most	 important	 one
because	 the	procedural	 languages,	 even	 if	 different,	 are	 still	 similar.	 I	 don’t	 find	 it	 very
difficult	to	accommodate	one	knowing	another.	As	I	said,	a	cursor	is	a	cursor,	a	loop	is	a
loop,	the	syntax	is	different	but	the	meaning	is	the	same.	The	atomic	style	is	the	same.

Now	let’s	see	 the	holistic	approach	for	Oracle.	Seeing	 this	complicated	 logic,	you
might	believe	is	going	to	be	difficult.	Actually	it	is	not,	and	the	famous	“with	clause”	that
we	discussed	earlier	will	transform	the	previous	exercise	in	a	simple	SQL	statement.	Let’s
see	the	holistic	solution.

Code	example	37	Holistic	get	the	default	quantity	per	type	Oracle	WITH	types_quantities	AS	(

SELECT	SUBSTR(pt.Product_Type_Code,	1,	1)	AS	Type_Code,

CASE	WHEN	p.Make_Flag	=	1	THEN	p.	Default_Quantity	*	p.Default_Quantity

WHEN	p.Make_Flag	=	0	THEN	2	*	p.Default_Quantity

ELSE	NULL	END	AS	Current_Qtty

FROM	Product_Types	pt	INNER	JOIN	Products	p

ON	(p.Product_Type_Id	=	pt.Product_Type_Id)

WHERE	SUBSTR(pt.Product_Type_Code,	1,	1)	=	‘C’

UNION	ALL

SELECT	SUBSTR(pt.Product_Type_Code,	1,	1)	AS	Type_Code,

CASE	WHEN	p.Make_Flag	=	1	THEN	p.	Default_Quantity	*	p.Default_

Quantity	-	p.Default_Quantity

WHEN	p.Make_Flag	=	0	THEN	3	*	p.Default_Quantity

ELSE	NULL	END	AS	Current_Qtty

FROM	Product_Types	pt	INNER	JOIN	Products	p

ON	(p.Product_Type_Id	=	pt.Product_Type_Id)

WHERE	SUBSTR(pt.Product_Type_Code,	1,	1)	=	‘D’

)

SELECT	Type_Code,	SUM(Current_Qtty)	AS	Current_Qtty

FROM	types_quantities

GROUP	BY	Type_Code;

As	you	can	see	this	is	a	simple	SQL	statement,	with	the	help	of	the	“with	clause”.	A
similar	 solution	can	be	offered	 in	SQL	Server	 too.	Still,	maybe	 the	“with	clause”	 is	not
implemented	yet	in	all	the	database	systems.

Let’s	see	another	 implementation	 for	 this	practice	using	 the	SQL	Server	database.
The	atomic	solution	will	be	very	similar	with	the	Oracle	solution.	Let’s	look	at	it	first.

Code	example	38:	Atomic	get	the	default	quantity	per	type	SQL	Server

CREATE	PROCEDURE	Atomic_Get_Qtty_Per_Type

AS

DECLARE	@v_Product_Type_Code	VARCHAR(5),

@v_Make_Flag	INT,	@v_Default_Quantity	INT,

@v_First_Letter_Type	CHAR(1),

@v_Current_Qtty	INT,	@v_Current_Qtty_C	INT,	@v_Current_Qtty_D	INT;

DECLARE	c_Get_Products_Qtty	CURSOR	FOR

SELECT	pt.Product_Type_Code,	p.Make_Flag,	p.Default_Quantity

FROM	Product_Types	pt	INNER	JOIN	Products	p

ON	(p.Product_Type_Id	=	pt.Product_Type_Id);

BEGIN

SET	@v_Current_Qtty_C	=	0;

SET	@v_Current_Qtty_D	=	0;

SET	@v_Current_Qtty	=	0;

OPEN	c_Get_Products_Qtty;

FETCH	NEXT	FROM	c_Get_Products_Qtty

INTO	@v_Product_Type_Code,	@v_Make_Flag,	@v_Default_	Quantity;

WHILE	@@FETCH_STATUS	=	0

BEGIN

SET	@v_First_Letter_Type	=	SUBSTRING	(@v_Product_Type_	Code,	1,	1);

IF	@v_First_Letter_Type	=	‘C’

BEGIN

IF	@v_Make_Flag	=	1

SET	@v_Current_Qtty	=	@v_Default_Quantity	*	@v_Default_	Quantity;

ELSE	IF	@v_Make_Flag	=	0

SET	@v_Current_Qtty	=	2	*	@v_Default_Quantity;

END

ELSE

BEGIN

IF	@v_Make_Flag	=	1

SET	@v_Current_Qtty	=	@v_Default_Quantity	*	@v_Default_	Quantity	-	@v_Default_Quantity;

ELSE	IF	@v_Make_Flag	=	0

SET	@v_Current_Qtty	=	3	*	@v_Default_Quantity;

END

IF	@v_First_Letter_Type	=	‘C’

SET	@v_Current_Qtty_C	=	@v_Current_Qtty_C	+	@v_Current_Qtty;

ELSE

SET	@v_Current_Qtty_D	=	@v_Current_Qtty_D	+	@v_Current_Qtty;

FETCH	NEXT	FROM	c_Get_Products_Qtty

INTO	@v_Product_Type_Code,	@v_Make_Flag,	@v_Default_Quantity;

END

CLOSE	c_Get_Products_Qtty;

DEALLOCATE	c_Get_Products_Qtty;

PRINT(‘The	 total	 default	 quantity	 for	 the	 products	 with	 C	 type	 is	 ‘	 +

CAST(@v_Current_Qtty_C	AS	VARCHAR(20)));

PRINT	 (‘The	 total	 default	 quantity	 for	 the	 products	 with	 D	 type	 is	 ‘	 +

CAST(@v_Current_Qtty_D	AS	VARCHAR(20)));

END;

GO

You	can	easily	see	 the	similarities	between	Oracle	and	SQL	Server,	at	 least	 in	 the
simple	examples	of	atomic	approaches.	With	this,	I	want	to	illustrate	the	fact	that	the	style
is	similar	even	if	the	approaches	are	atomic.	Still,	there	are	some	differences	but	these	can
be	easily	passed.	You	can	check	the	results	and	you	should	see	the	same	values.

The	‘with	clause’	can	be	used	in	SQL	Server	too.	Still,	I	rather	prefer	to	use	a	classic
temporary	 table	 instead.	 The	 reason	 is	 that	 sometimes	 we	 should	 manipulate	 the	 data
before	getting	 the	 results	and	sometimes	 the	“with	clause”	can	be	 insufficient.	Let’s	 see
this	last	example	in	the	holistic	approach.

Code	example	39	Holistic	get	the	default	quantity	per	type	SQL	Server

CREATE	PROCEDURE	Holistic_Get_Qtty_Per_Type

AS

BEGIN

CREATE	TABLE	#types_and_quantities	(Type_Code_Prefix	CHAR(1),

Current_Qtty	INT);

INSERT	INTO	#types_and_quantities	(Type_Code_Prefix,	Current_	Qtty)

SELECT	SUBSTRING	(pt.Product_Type_Code,	1,	1)	AS	Type_Code_	Prefiix,

CASE	WHEN	p.Make_Flag	=	1	THEN	p.Default_Quantity	*	p.Default_	Quantity

WHEN	p.Make_Flag	=	0	THEN	2	*	p.Default_Quantity

ELSE	NULL	END	AS	Current_Qtty

FROM	Product_Types	pt	INNER	JOIN	Products	p

ON	(p.Product_Type_Id	=	pt.Product_Type_Id)

WHERE	SUBSTRING	(pt.Product_Type_Code,	1,	1)	=	‘C’;

INSERT	INTO	#types_and_quantities	(Type_Code_Prefix,	Current_	Qtty)

SELECT	SUBSTRING	(pt.Product_Type_Code,	1,	1)	AS	Type_Code,

CASE	 WHEN	 p.Make_Flag	 =	 1	 THEN	 p.Default_Quantity	 *	 p.Default_	 Quantity	 -

p.Default_Quantity

WHEN	p.Make_Flag	=	0	THEN	3	*	p.Default_Quantity

ELSE	NULL	END	AS	Current_Qtty

FROM	Product_Types	pt	INNER	JOIN	Products	p

ON	(p.Product_Type_Id	=	pt.Product_Type_Id)

WHERE	SUBSTRING	(pt.Product_Type_Code,	1,	1)	=	‘D’;

SELECT	Type_Code_Prefiix,	SUM(Current_Qtty)	AS	Current_Qtty

FROM	#types_and_quantities

GROUP	BY	Type_Code_Prefix;

END;

GO

The	 difference	 is	 the	 fact	 that,	 if	 the	 algorithm	 would	 have	 been	 even	 more
complicated,	 this	 temporary	 table	 could	 have	 been	 updated	 several	 times,	 eventually
combined	with	other	temporary	tables.	This	approach	may	not	have	the	best	performance
sometimes,	 but	 it	 is	 a	 holistic	 approach.	Very	 rarely,	 this	 style	 of	work	with	 temporary
tables,	 if	required	due	to	the	complexity,	will	have	a	lower	performance	comparing	with
the	 atomic	 approach.	This	 is	 one	more	 scenario	 for	 a	 holistic	 solution	 that	 can	 be	 used
against	a	classic	atomic	and	procedural	solution.

With	this,	we	close	this	chapter	and	we	approach	the	end.

In	the	last	chapter,	I’ll	try	to	conclude	most	of	the	things	that	have	been	discussed
and	I	will	try	to	add	some	more	examples	to	illustrate	the	two	styles	of	development.

Chapter	8

ROW	TRIGGERS.	WHEN	SHOULD	WE
FOLLOW	THE	ATOMIC	WAY?	SOME	FINAL

REFLECTIONS	AND	THOUGHTS!
THE	USE	OF	ROW	TRIGGERS:	ANOTHER	COMMON	ATOMIC
SOLUTION	USED	IN	EXCESS
I	discussed	a	 lot	 about	 scalar	 functions	and	 I	 consider	 them	one	 suitable	 facility	 for	 the
atomic	approach.	That	is	not	the	only	one.	Apart	from	scalar	functions,	a	feature	coming
from	structured	programming,	there	is	another	one,	coming	from	the	database	area.	I	am
referring	to	table	triggers,	of	course.

When	learning	database	programming	and	languages	like	PL	SQL	or	Transact	SQL,
the	programmer	starts	with	the	basics	and	finishes	with	the	set	of	procedural	objects	like
functions	and	procedures.	These	two	are	already	well	known	from	the	classic	languages	so
he	 can	 understand	 them	 relatively	 quickly.	However,	 soon	 after	 learning	 these	 types	 of
procedural	 objects,	 the	 programmer	 learns	 about	 a	 new	 type	 of	 object,	 specific	 to
databases	and	especially	specific	to	tables:	triggers.

The	developer	is	sometimes	seduced	by	the	idea	of	implicit	and	automatic	execution
of	the	trigger.	The	main	difference	between	a	trigger	and	a	stored	procedure	is	well	known
and	it	resides	in	execution.	If	a	stored	procedure	is	always	executed	manually	and	we	have
full	 control	 over	 the	 execution,	which	means	we	 know	 exactly	when	we	 execute	 it,	we
cannot	 say	 the	 same	 thing	 about	 the	 trigger.	The	 trigger	 and	 I	 am	 referring	 to	 the	most
common	type	of	trigger,	table	trigger	is	always	executed	indirectly	and	automatic	based	on
a	certain	event	in	the	table.	The	events	are	generally	“DML”	statements.	Consequently,	we
can	have	insert,	update	or	delete	triggers.	The	trigger	is	executed	automatically	based	on
an	action	against	the	table	to	which	the	trigger	belongs.	The	trigger	is	a	dependent	object
because	it	is	linked	to	the	table.	In	a	way,	the	trigger	is	like	a	constraint,	a	similar	type	of
object.	Moreover,	 the	 complexity	 of	 the	 trigger	 is	 high,	 we	 can	 do	 very	 complex	 data
manipulation	inside	a	trigger	and	the	complexity	of	a	trigger	is	similar	to	the	complexity
of	a	stored	procedure.

The	programmer	is	firstly	seduced	by	the	fact	that	the	execution	is	automatic	and	he
can	 remove	 this	 task	 completely	 from	 his	 head	 and	 leave	 this	 for	 the	 table	 event.
Sometimes	it	is	required.

Afterwards,	 the	 programmer	 learns	 about	 the	 fact	 that	 a	 trigger	 can	 be	 a	 holistic
trigger	 or	 an	 atomic	 trigger,	 so	 a	 statement	 or	 row	 trigger.	 The	 statement	 triggers	 act
holistically	so	they	are	in	concordance	with	the	holistic	approach.	On	the	other	hand,	the
row	 trigger	 is	 very	 similar	 with	 the	 scalar	 function	 and	 it	 is	 an	 ideal	 facility	 for	 the
applications	 developers	 working	 inside	 relational	 databases.	 The	 row	 triggers	 are
intensively	used	by	them	and	not	only.	Maybe	too	intensively,	I	might	say.

The	row	triggers	offer	 the	advantage	of	allowing	direct	access	per	every	field	and

every	 row,	 an	 ideal	 facility	 for	 application	 developers	 working	 atomically	 in	 relational
databases.	 Sometimes,	 row	 triggers	 might	 be	 useful.	 Very	 often,	 row	 triggers	 can	 be
avoided.	It	is	well	known	that	the	performance	of	triggers	is	not	very	poor	and	normally
these	should	be	avoided	and	used	as	a	last	resource.	Still,	because	these	are	so	intimately
related	 to	 the	atomic	style	of	development,	especially	 row	 triggers,	 these	are	 intensively
used	 in	a	variety	of	data	oriented	software	applications.	The	programmers	will	 see	 right
away	 that	 row	 triggers	match	 their	atomic	vision	against	data	and	 they	start	using	 these
intensively.	This	way,	you	can	see	a	large	variety	of	databases	filled	with	row	triggers	and
scalar	functions!

One	common	example	is	the	one	where	an	artificial	identifier	should	be	generated
from	a	 sequence.	Sequences	 are	great	 facility,	 an	 independent	 logical	object	 responsible
for	 the	 generation	 of	 numbers	 starting	 from	 a	minimum	value	 and	 growing	with	 a	 step
specified	 at	 the	 time	 of	 creation.	 Sequences	 are	 very	 common	 and	 they	 are	 an	 ideal
method	for	artificial	numeric	generation.

Unfortunately,	 the	 application	 developer	 likes	 the	 combination	 between	 the	 insert
trigger	 and	 the	 sequence,	 actually	 better	 said	 between	 a	 before	 insert	 trigger	 and	 a
sequence.	As	you	perhaps	know,	a	trigger	is	also	classified	by	the	timing	compared	to	the
event	that	raises	the	trigger.	The	trigger	can	be	before	the	event,	after	the	event	of	instead
of	the	event,	for	views.	The	before	insert	triggers	and	sequences	are	one	favorite	method
for	the	population	of	artificial	identifiers.

Let’s	go	back	to	chapter	5	and	review	the	Oracle	atomic	full	transfer,	first	exercise.
The	 solution	was	written	 in	 the	Code	 example	 06.	You	 can	 see	 how	 the	 identifiers	 for
English	 and	 French	 languages	 were	 generated	 in	 the	 logic	 in	 the	 loop.	 Now	 we	 will
change	this	logic	and	use	some	sequences	for	the	keys	generation	for	the	reporting	tables.
We	 can	 create	 either	 one	 sequence	 for	 both	 reporting	 tables	 or	 two	 sequences,	 one	 per
language.	I	prefer	to	create	two	dedicated	sequences,	let’s	see	them	below:

Code	example	40	Create	sequences

CREATE	SEQUENCE	English_CL_Id_Seq	START	WITH	1	INCREMENT	BY	1

/

CREATE	SEQUENCE	French_CL_Id_Seq	START	WITH	1	INCREMENT	BY	1

/

We	will	use	these	sequences	to	generate	the	new	values	for	the	artificial	keys	for	the
reporting	tables.	For	that,	we	will	create	two	triggers,	one	per	table.	Let’s	see	the	triggers
and	then	analyze	the	logic	inside,	actually	very	simple	and	classic.

Code	example	41	The	set	of	before	triggers

CREATE	TRIGGER	English_CL_Id_Tg

BEFORE	INSERT	ON	English_European_Countries

FOR	EACH	ROW

DECLARE

BEGIN

IF	:new.English_CL_Id	IS	NULL	THEN

:new.English_CL_Id	:=	English_CL_Id_Seq.nextval;

END	IF;

END;

/

CREATE	TRIGGER	French_CL_Id_Tg

BEFORE	INSERT	ON	French_European_Countries

FOR	EACH	ROW

DECLARE

BEGIN

IF	:new.French_CL_Id	IS	NULL	THEN

:new.French_CL_Id	:=	French_CL_Id_Seq.nextval;

END	IF;

END;

/

These	two	triggers	are	similar,	one	for	English	and	one	for	French.	These	triggers
will	 be	 executed	 every	 time	 before	 a	 new	 row	 is	 inserted	 into	 the	 base	 table.	 The	 new
value	will	be	taken	from	the	sequence.	Afterwards,	it	will	populate	the	artificial	identifier.
This	is	a	very	common	technique	and	many	application	developers	are	using	it,	especially
Oracle	developers.	Of	course,	using	sequences	with	triggers	means	that	the	sequence	will
be	the	only	accepted	method	for	the	identifiers	population.	We	cannot	combine	with	any
other	methods.

Let’s	update	the	code	example	06	accordingly	and	generate	the	full	 transfer	again.
Let’s	see	it	and	analyze	again	on	the	topic.

Code	example	42:	Oracle	Atomic	Full	transfer,	with	triggers

CREATE	PROCEDURE	Atomic_Full_Transfer_Country_t

(p_Language_Name	VARCHAR)

AS

v_Country_Name	VARCHAR2(50);

v_Country_Code	VARCHAR2(3);

v_Language_Category	VARCHAR2(10);

CURSOR	c_Get_Countries	(p_Language	VARCHAR2)	IS

SELECT	c.Country_Name,	c.Country_Code,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	p_Language;

BEGIN

IF	p_Language_Name	=	‘English’	THEN

DELETE	English_European_Countries;

ELSIF	p_Language_Name	=	‘French’	THEN

DELETE	French_European_Countries;

END	IF;

OPEN	c_Get_Countries	(p_Language_Name);

LOOP

FETCH	c_Get_Countries

INTO	v_Country_Name,	v_Country_Code,	v_Language_Category;

EXIT	WHEN	c_Get_Countries%NOTFOUND;

IF	p_Language_Name	=	‘English’	THEN

INSERT	INTO	English_European_Countries	(Country_Code,	Country_Name,	Language_Category)

VALUES	 (v_Country_Code,	 v_Country_Name,	 v_Language_Category);	 ELSIF	 p_Language_Name	 =

‘French’	THEN

INSERT	INTO	French_European_Countries	(Country_Code,	Country_Name,	Language_Category)

VALUES	(v_Country_Code,	v_Country_Name,	v_Language_Category);

END	IF;

COMMIT;

END	LOOP;

CLOSE	c_Get_Countries;

END	Atomic_Full_Transfer_Country_t;

/

If	you	compare	this	version	with	the	version	in	Code	example	06,	you	will	see	the
differences.	The	identifier	is	not	visible	anymore:	it	is	updated	in	the	back,	by	the	trigger.
If	you	 look	at	 the	 target	 tables,	you	will	not	see	 the	key	because	 the	 trigger	updates	 the
key.

This	 technique	 is	 a	 disaster	 if	medium	 to	 large	 sets	 of	 data	 are	 handled	 in	 a	 data
transfer.	When	affecting	data	sets,	and	using	row	triggers,	you	are	in	a	dilemma.	Triggers
are	not	visible	you	need	to	search	for	them.	Try	to	imagine	that	you	work	holistically	and
set	based,	you	are	affecting	100	rows	now	in	a	clean	and	pure	SQL	logic,	holistic	and	set
based.	Even	more,	 you	 are	 very	 proud	 of	 your	 style	 and	 you	 know	 that	 the	 flow	 is	 set
based	 and	 as	 fast	 as	 it	 can	 be.	 Still,	 the	 logic	 is	 very	 slow	 and	 you	 don’t	 know	 why!
Suddenly,	you	realize	 that	you	have	a	row	trigger	 that	change	the	entire	flow,	 instead	of
being	 a	 set	 based	 flow	 and	 a	 holistic	 style	 it	 is	 transformed	 into	 an	 atomic	 flow.	 Let’s
rewrite	the	code	example	08,	the	Oracle	full	transfer.

Let’s	see	it	now:
Code	example	43:	Oracle	Holistic	Full	transfer,	triggers

CREATE	PROCEDURE	Holistic_Full_Transf_Country

(

p_Language_Name	VARCHAR

)

AS

BEGIN

DELETE	English_European_Countries

WHERE	p_Language_Name	=	‘English’;

DELETE	French_European_Countries

WHERE	p_Language_Name	=	‘French’;

INSERT	INTO	English_European_Countries	(Country_Code,	Country_Name,	Language_Category)

SELECT	c.Country_Code,	c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	p_Language_Name	AND	p_Language_Name	=	‘English’;

INSERT	INTO	French_European_Countries	(Country_Code,	Country_Name,	Language_Category)

SELECT	c.Country_Code,	c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	l.Language_Name	=	p_Language_Name	p_Language_Name	=	‘French’;

COMMIT;

END	Holistic_Full_Transf_Country;

/

This	 example	 looks	 like	 an	 example	 of	 holistic	 style	 of	 development.	Actually	 it
isn’t!	Despite	the	fact	that	the	logic	itself	is	set	based	and	holistic,	the	row	triggers	change
everything	and	the	logic	is	atomic	instead	of	being	holistic.

Personally,	I	rarely	use	triggers,	especially	row	triggers.	They	act	per	row,	and	they
have	all	the	disadvantages	of	the	atomic	vision	of	development.	Of	course,	sometimes	are
necessary.	You	can	decide	yourself	but	be	aware	of	these	disadvantages	and	especially	be
aware	 of	 the	 fact	 that	 a	 set	 based	 logic,	 when	 associated	with	 row	 triggers,	 transforms
everything.	The	 set	based	 is	 like	a	 shadow,	a	mask	and	 the	people	behind	 the	mask	are
revealed	by	the	row	trigger!

THE	ATOMIC	APPROACH	SHOULD	BE
USED,	WHENEVER	IS	NECESSARY!
As	 I	 often	 mentioned,	 sometimes	 the	 atomic	 approach	 might	 be	 necessary.	 There	 are
situations	when	we	need	to	think	atomically,	to	open	cursors	and	move	the	data	at	the	row
level	into	variables,	do	various	manipulations	and	all	the	rest	of	the	staff.	The	combination
SQL	and	procedural,	the	combination	holistic	and	atomic,	all	together	are	composing	the
database	programming	language.	I	never	imagined	and	I	never	considered	that	the	variety
of	 procedural	 facilities	 and	 atomic	 ones	 are	 not	 to	 be	 used.	 A	 database	 programming
language	is	composed	by	all	of	them	and	all	 the	features	are	needed,	more	or	less	often.
Still,	 it	 is	 very	 important	 to	 remember,	whenever	we	 are	 developing	 inside	 a	 relational
database,	 the	 simple	 fact	 that	 we	 are	 inside	 a	 relational	 database!	 That	 always	 means,
simply,	rows	and	columns.

The	 set	 based	 approach	 and	 the	 holistic	 style	 of	 development	 are	 referring	 to
tendencies	and	statistics.	In	most	of	the	cases,	we	should	answer	to	our	business	questions
using	set	based	solutions	and	holistic	answers.	However,	most	of	the	cases	do	not	exclude
exceptions.	The	data	set	 is	composed	of	a	number	of	rows	and	sometimes,	 to	be	able	 to
solve	our	problems,	we	need	to	move	back	to	the	row	level	and	think	atomically.	The	row
based	approach	and	the	atomic	styles	of	development	are	useful	solutions	but	they	are	to
be	used	as	last	resources	and	not	as	default	solutions.

Let’s	analyze	one	type	of	scenario	where	an	atomic	solution	can	be	used.

Business	/	technical	description

WE	WANT	TO	DISPLAY	THE	LIST	WITH	ALL	THE	LANGUAGES	AND	THE
COUNTRIES	ATTACHED,	AS	PRINCIPAL	OR	SECONDARY.	WE	NEED	TO
CONCATENATE	IN	A	STRING	THE	LIST	OF	COUNTRIES	SEPARATED	BY
COMMAS,	FOR	EACH	CATEGORY.

This	is	an	example	that	can	be	solved	atomically.	This	is	one	of	these	situations	where	the
programmer	can	work	atomically.	Very	often,	he	needs	to.	He	may	try	to	look	for	set	based
facilities	like	analytics	functions	(for	example	row	number).	However,	if	he	is	not	able	to
find	 these	 he	may	 think	 at	 the	 cursor	 and	 he	may	 start	 to	 divide	 everything	 at	 the	 row
level.

When	is	the	division	actually	necessary?	There	are	situations	when	we	are	forced	to
divide	at	the	row	level	and	work	atomically.

From	my	 experience,	 this	 division	may	 occur	when	we	 are	 forced	 to	 do	 various
manipulations	row	by	row	and	do	whatever	calculations,	store	some	intermediates	results.
I	don’t	believe	we	can	state	any	rule	for	the	division	to	be	accepted,	things	are	related	to
the	particularities	of	the	situation.	Still,	in	most	of	the	cases,	the	division	is	required	when
we	need	to	see	things	row	by	row.	In	this	case,	a	simple	SQL	statement	is	not	enough.

Let’s	analyze	 this	example.	We	have	 the	 three	 tables:	one	with	 the	 languages,	one
with	the	countries	and	their	associations.	For	every	language,	we	have	a	list	of	countries
and	 every	 language	 is	 either	 principal	 or	 secondary	 for	 the	 country.	 The	 data	 is	 highly
normalized.	From	 this	 design,	we	need	 to	get	 a	 kind	of	 report,	 a	 situation	per	 language
with	two	lists.	The	first	list	will	contain	all	the	countries	where	the	language	is	principal

and	the	second	list	will	contain	the	countries	where	the	language	is	secondary.	For	that,	we
need	 to	 be	 able	 to	move	 into	 the	 tables,	 in	 a	 row-by-row	 approach,	 to	 concatenate	 the
countries,	 store	 them	 somehow,	 and	 finally	generate	 the	 report.	This	 example	 illustrates
the	need	for	the	atomic	approach	in	certain	situations.

Let’s	see	the	version	for	SQL	Server.
Code	example	44:	display	the	list	with	languages	and	countries

CREATE	PROCEDURE	Atomic_List_Of_Countries

AS

DECLARE	@v_Country_Name	NVARCHAR(50);

DECLARE	@v_Language_Category	NVARCHAR(10);

DECLARE	@v_Language_Name	NVARCHAR(50);

DECLARE	@v_Language_Id	INT;

DECLARE	@v_List_Of_Countries_Main	NVARCHAR(4000);

DECLARE	@v_List_Of_Countries_Sec	NVARCHAR(4000);

DECLARE	@v_Previous_Language_Name	NVARCHAR(50);

DECLARE	c_Get_Languages	CURSOR	FOR

SELECT	l.Language_Id,	l.Language_Name

FROM	Languages	l

WHERE	EXISTS

(

SELECT	1	FROM	Countries_Languages	cl

WHERE	cl.Language_Id	=	l.Language_Id

)

ORDER	BY	2;

BEGIN

CREATE	 TABLE	 #List_Of_Countries	 (Language_Name	 NVARCHAR(50),	 List_Of_Countries_Main

NVARCHAR(4000),	List_Of_Countries_Sec

NVARCHAR(4000));

OPEN	c_Get_Languages;

FETCH	NEXT	FROM	c_Get_Languages

INTO	@v_Language_Id,	@v_Language_Name;

WHILE	@@FETCH_STATUS	=	0

BEGIN

SET	@v_List_Of_Countries_Main	=	‘’;

SET	@v_List_Of_Countries_Sec	=	‘’;

DECLARE	c_Get_Countries	CURSOR	FOR

SELECT	c.Country_Name,	cl.Language_Category

FROM	Countries_Languages	cl	INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

WHERE	cl.Language_Id	=	@v_Language_Id

ORDER	BY	cl.Language_Category,	c.Country_Name;

OPEN	c_Get_Countries;

FETCH	NEXT	FROM	c_Get_Countries

INTO	@v_Country_Name,	@v_Language_Category;

WHILE	@@FETCH_STATUS	=	0

BEGIN

IF	@v_Language_Category	=	‘MAIN’

SELECT	 @v_List_Of_Countries_Main	 =	 @v_List_Of_Countries_Main	 +	 @v_Country_Name	 +

‘,’

ELSE

SELECT	@v_List_Of_Countries_Sec	=	@v_List_Of_Countries_	Sec	+	@v_Country_Name	+	‘,’

FETCH	NEXT	FROM	c_Get_Countries

INTO	@v_Country_Name,	@v_Language_Category;

END

CLOSE	c_Get_Countries;

DEALLOCATE	c_Get_Countries;

IF	LEN(@v_List_Of_Countries_Main)	>	1

SET	 @v_List_Of_Countries_Main	 =	 SUBSTRING	 (@v_List_Of_	 Countries_Main,	 1,

LEN(@v_List_Of_Countries_Main)	-	1);

IF	LEN(@v_List_Of_Countries_Sec)	>	1

SET	 @v_List_Of_Countries_Sec	 =	 SUBSTRING	 (@v_List_Of_	 Countries_Sec,	 1,

LEN(@v_List_Of_Countries_Sec)	-	1);

INSERT	 INTO	 #List_Of_Countries	 (Language_Name,	 List_Of_	 Countries_Main,

List_Of_Countries_Sec)

VALUES	(@v_Language_Name,	@v_List_Of_Countries_Main,	@v_	List_Of_Countries_Sec);

FETCH	NEXT	FROM	c_Get_Languages

INTO	@v_Language_Id,	@v_Language_Name;

END

CLOSE	c_Get_Languages

DEALLOCATE	c_Get_Languages;

SELECT	*	FROM	#List_Of_Countries

DROP	TABLE	#List_Of_Countries

END

GO

Let’s	analyze	 the	 logic	above.	Of	course,	 that	 this	could	have	been	done	 in	many
ways,	this	is	one	of	the	many	possible	solutions.

Even	 if	 the	 solution	 is	 atomic,	we	 are	 still	 in	 the	world	 of	 data.	 This	means	 that
again	everything	starts	from	a	data	set.	Let’s	call	it	the	base	data	set	or	the	detail	data	set.

Let’s	see	this	base	data	set:
Code	example	45:	the	base	data	or	detail	set

SELECT	c.Country_Name,	cl.Language_Category,	l.Language_Name

FROM	Countries_Languages	cl	INNER	JOIN	Languages	l

ON	(l.Language_Id	=	cl.Language_Id)

INNER	JOIN	Countries	c

ON	(c.Country_Id	=	cl.Country_Id)

ORDER	BY	l.Language_Name,	cl.Language_Category,	c.Country_	Name;

Let’s	look	at	the	data	because	this	is	the	key	to	the	solution.

This	data	 set	 is	 the	 starting	point	 for	 the	 solution.	Starting	 from	here,	we	need	 to
generate	the	report.	We	can	see	a	variety	of	languages	and	associated	countries,	with	the
associated	 category.	 For	 example,	 for	 English,	 the	 countries	 are	Malta,	 UK	 and	 US	 as
main	languages.	There	are	also	Switzerland	and	Netherlands	as	secondary	countries.	We
can	 imagine	 the	 list	 is	 larger	 and	we	can	 see	 that,	 to	be	 able	 to	get	 the	 list,	we	need	 to
position	in	the	language	and	then,	from	there,	we	need	to	start	concatenate	the	countries
based	on	category.	We	need	 to	concatenate	 the	countries	 for	main	and	 for	 secondary.	A
simple	SQL	seems	to	be	not	enough	because	the	list	of	countries,	in	order	to	be	obtained,
requires	row-by-row	access,	requires	row	division.

Let’s	see	the	proposed	solution,	see	the	above	code	example	44:

1.	 We	declare	one	cursor	for	the	languages.	We	will	store	the	languages	that	have
at	least	one	country	assigned	to	it.	We	store	from	this	cursor,	for	every	row,	the
language	name	and	language	identifier.

2.	 We	create	a	temporary	table,	in	the	pure	SQL	Server	style,	to	get	the	results.
3.	 We	declare	two	variables	dedicated	for	storing	the	lists	of	countries,	based	on

category,	one	for	main	and	one	for	secondary.
4.	 For	every	language,	we	declare	another	cursor	and	use	with	the	list	of

countries.	For	every	language,	we	store	in	dedicated	variables	the	country	and
the	category.

5.	 In	the	second	cursor,	the	inner	cursor,	we	start	concatenation	and	link	the
countries,	separated	by	a	comma.

6.	 When	we	are	done,	and	move	back	to	the	outer	cursor,	we	remove	the	last
comma	from	the	string,	from	both	lists.

7.	 Being	in	the	outer	cursor,	with	the	languages,	we	add	the	data	from	the
dedicated	variables	and	populate	the	reporting	table.

8.	 In	the	end,	we	display	the	desired	list.

Let’s	see	the	results:

This	example	shows	that,	sometimes,	we	can	use	the	atomic	approach	and	sometimes	we
need	to	follow	the	atomic	approach.	Cursors	are	a	great	facility	and	the	main	reason,	in	my
opinion,	is	exactly	this	one.	The	cursors,	in	combination	with	the	use	of	loops	and	the	use
of	 fetch	 allow	 us	 to	 position	 ourselves	 from	 one	 row	 to	 another	 and	 do	 various
manipulations.	It	would	never	cross	my	mind	to	deny	their	utility.	What	I	intend	to	show
almost	 everywhere	 in	 this	 book	 is	 the	 fact	 that	 we	 need	 to	 be	 aware	 that	 we	 are	 in	 a
database,	we	are	affecting	data	sets	and	we	need	to	keep	in	mind	the	holistic	vision	first.
That	does	not	mean	we	should	not	be	aware	of	the	possibility	of	division	from	data	set	to
data	row,	when	necessary.

It	 is	 necessary	 when	 the	 business	 requirements	 are	 of	 a	 nature	 that	 forces	 us	 to
position	 at	 the	 row	 level	 and	 do	 various	 manipulations.	 These	 manipulations	 can	 be
handled	 by	 various	 set	 based	 facilities	 like	 row	 number,	 but	 if	 we	 do	 not	 have	 such
facilities	or	if	we	are	not	able	to	find	them,	we	have	always	the	option	to	use	cursors	and
move	the	context	to	row	level.

Sometimes	we	need	 to	handle	 things	atomically	but	we	don’t	need	 to	 think
atomically	unless	 it’s	necessary,	 this	 is	 the	meaning	of	 the	entire	book.	Considering	our
house,	 the	 house	 of	 relational	 databases	 and	 the	 house	 of	 rows	 and	 columns,	 and
considering	that	the	main	goal	is	to	handle	data	sets,	it’s	even	against	the	logic,	reason	and
common	sense	to	think	atomically	by	default.	This	is	what	I	wanted	to	show	with	all	my
examples	 with	 the	 SQL	 shop.	 Apart	 from	 performance,	 portability,	 simplicity	 and
naturalness,	it	is	obvious	and	normal	to	try	to	think	holistically	and	SQL,	due	to	the	nature
of	data.	This	example	shows	that	we	have	always	on	our	minds	an	atomic	solution,	if	the
set	based	approach	is	not	sufficient.

SOME	FINAL	REFLECTIONS	AND	THOUGHTS
In	 the	 end	 of	 this	 final	 chapter,	 I	 propose	 to	 share	 some	 thoughts	 taken	 from	 my
experience	as	a	database	specialist,	mainly	database	developer.

Without	considering	myself	a	guru,	who	I	am	definitely	not,	I	am	a	passionate	and
dedicated	SQL	person.	I	spent	many	years	in	SQL	development	and	I	tried	to	develop	my
own	style.	During	 these	years	of	development,	 I	gathered	many	experiences,	discovered
many	ideas,	and	rediscovered	the	wheel	many	times.	I	don’t	dare	to	say	I	am	original	and	I
know	 very	 well	 that	 most	 of	 the	 ideas	 explained	 here	 are	 well	 known	 by	 many
professionals	all	over	the	world.	However,	I	hope	to	offer	a	better	view	and	I	hope	to	add
some	clarifications	to	some	of	our	realities.

Apart	from	the	distinction	between	the	two	styles	of	development,	I	want	to	share
some	other	thoughts	and	ideas	from	my	experience	as	SQL	developer.	Maybe	some	of	the
developers	will	follow	some	of	my	advices,	maybe	not.	We	leave	in	a	free	world,	so	every
reader	 of	 this	 book	will	 take	 the	best	 decision	 in	 concordance	with	his	 personality	 and,
why	not,	with	this	style!

THE	CONCEPT	OF	SQL	TEMPLATE
When	 considering	 the	 holistic	 approach	 for	 our	 database	 and	 decided	 to	 develop
accordingly,	 depending	 on	 the	 type	 of	 system,	 we	 should	 try	 to	 follow	 the	 classic
principles	 of	 programming.	 Working	 holistically	 does	 not	 mean	 ignoring	 the	 classic
principles	of	 programming,	 but	 trying	 to	 combine	what	 is	more	 suitable	 from	both.	For
example,	working	holistically	does	not	mean	having	large	procedures	with	a	 lot	of	 logic
inside.	We	may	have	that	due	to	the	business	requirements,	but	not	because	of	the	holistic
style	of	development.

The	 principle	 of	 division,	 so	 popular	 in	 programming	 like	 anywhere	 in	 life,	 is
available	in	the	holistic	approach	too.	This	principle	states	that,	if	a	problem	is	complex,	it
can	be	divided	into	simpler	problems;	and	these	ones	eventually	can	be	divided	too.	The
division	 may	 occur	 in	 time	 not	 necessarily	 from	 the	 beginning.	 For	 example,	 we	 may
generate	a	complex	logic	and	we	are	not	aware	from	the	beginning	about	the	principle	of
division.	Very	often,	we	are	 focused	on	 the	general	 task,	 the	big	problem	without	being
aware	of	 the	principle	of	division.	When	we	are	done	with	 the	 logic	and	we	look	at	our
masterpiece,	we	realize	that	we	may	divide	the	logic	into	many	pieces	like	functions	and
procedures.	Afterwards,	when	we	have	 time,	we	divide	 the	work	accordingly.	However,
the	principle	of	division	has	the	same	value	for	both	atomic	and	holistic	approach.	I	don’t
see	 any	 reason	 for	 the	 holistic	 approach	 to	 do	 not	 follow	 this	 principle.	 Still,	 working
holistically	will	automatically	offer	a	more	consistent	perspective	and	maybe,	sometimes
we	will	have	fewer	objects	and	the	logic	may	appear	more	condensed.	For	example,	not
using	 scalar	 functions	 as	much	 as	 possible	will	minimize	 the	 number	 of	 these	 kinds	 of
routines.

On	the	other	hand,	considering	that	we	are	in	a	database	and	we	work	holistically,
we	have	 a	 variety	 of	 SQL	 statements	 to	 handle	 and	manage.	Very	 often,	 some	of	 these
SQL	statements	are	similar.	Sometimes	they	are	not.	Anyway,	we	may	consider	the	use	of
SQL	templates.	At	least	in	a	replication	or	a	data	migration	system,	that	kind	of	specific
software	 application	 that	 I	 consider	 as	 being	very	 suitable	 for	 the	 holistic	 approach,	we
may	 consider	 the	 use	 of	 SQL	 warehouses.	 A	 SQL	 warehouse	 is	 a	 collection	 of	 SQL
templates.	I	name	it	template	because	it	is	used	repeatedly	with	minor	changes	that	can	be
various	parameters	and	I	name	it	SQL	because	it	is	a	pure	SQL	statement.	That	collection
of	statements	can	embrace	a	large	number	of	SQL	statements	that	can	be	executed	in	one
context	or	another.	At	execution	time,	the	SQL	templates	will	receive	effective	values	for
the	parameters.

The	holistic	approach	means	the	use	of	SQL.	I	estimate	that	most	of	the	logic	will
be	composed	from	SQL	statements.	Especially	 if	we	are	 in	a	specific	system,	where	 the
goal	 is	always	 the	same,	moving	data	from	A	to	B,	 the	data	movement	process	will	and
can	be	managed	in	pure	SQL.	Consequently,	the	only	thing	you	need	to	do	is	to	get	the	set
of	SQL	statements.	For	a	better	organization,	we	can	gather	many	SQL	statements	in	the
warehouse	and	call	one	 template	or	another	from	various	places	 in	 the	specific	software
application.

The	SQL	warehouse	can	be	placed	in	a	table.	It	will	become	data	and	metadata	in
the	 same	 time.	 The	 metadata	 table	 can	 contain	 many	 fields	 that	 will	 be	 related	 to	 the
template	and	one	field	with	the	template	itself.	The	SQL	templates	will	be	executed	using

dynamic	SQL,	of	course,	in	various	context	of	the	software	application.

The	 custom	 metadata	 table	 is	 one	 possible	 house	 for	 the	 SQL	 templates.	 The
warehouse	can	also	be	placed	in	a	stored	procedure	with	a	series	of	parameters.	The	stored
procedure	will	be	executed	 in	one	context	or	another.	 I	used	both	approaches.	Now,	 if	 I
have	to	consider	both,	I	would	prefer	the	stored	procedure	because	I	see	only	embedded
SQL.	I	see	all	the	templates	here,	I	can	easily	read	and	understand	everything,	and	I	can
eventually	compare	various	templates.	Using	the	metadata	table,	all	the	templates	will	be
hidden.	 To	 look	 into	 one	 SQL	 template	 or	 another	 I	 need	 to	 query	 the	 table,	 take	 the
template	separately	in	another	window	and	debug	that	 template.	The	procedure	is	not	so
convenient.	 Finally,	 both	 methods	 are	 acceptable	 and	 are	 good	 places	 for	 the	 SQL
templates	warehouse.	 I	 am	planning	 to	 show	you	 some	of	 these	 techniques	when	 I	will
describe	a	replication	system	written	in	pure	SQL,	my	goal	for	my	future	book.

Thinking	 holistically	 is	 the	 first	 thing	 that	 should	 be	 acquired,	 especially	 in	 a
specific	 system	 like	 an	 ETL	 or	 a	 data	migration	 system.	However,	 not	 exclusively,	 the
holistic	style	and	vision	are	welcomed	in	the	classic	software	system	too,	only	that	there
sometimes	things	are	atomic	due	to	the	nature	of	the	business.	For	example,	we	are	in	an
invoicing	system.	We	are	now	positioned	in	an	invoice,	one	invoice.	We	are	now	updating
that	 invoice.	 We	 are	 already	 in	 one	 invoice,	 so	 the	 level	 is	 close	 to	 the	 atomic	 level.
Consequently,	it	does	not	matter	too	much	if	the	approach	is	holistic	or	atomic.	Still,	if	we
consider	the	details	of	the	invoice,	and	maybe	the	invoice	has	200	details,	it	is	one	thing	to
update	 200	 details	 in	 one	 action	 in	 a	 holistic	manner	 and	 another	 to	 try	 to	 affect	 every
detail	in	a	cursor.	As	you	can	see,	even	in	a	classic	system	is	recommended	to	follow	the
holistic	 approach,	 but	 it	 is	 not	 always	 necessary.	However,	 it	 is	 necessary	 in	 a	 specific
system,	 where	 the	 goal	 is	 to	 move	 data	 between	 various	 systems.	 In	 these	 kinds	 of
software	systems,	at	the	database	level,	we	should	always	consider	the	holistic	approach.
Having	 the	 fair	holistic	vision	and	having	so	much	SQL,	we	can	classify	 the	statements
and	try	to	organize	them	properly.	For	this	reason,	we	may	think	to	organize	them	in	these
kinds	 of	 SQL	 warehouses,	 embedded	 in	 either	 custom	 metadata	 tables	 or	 stored
procedures.

The	fact	that	a	large	number	of	SQL	templates	are	grouped	in	one	single	place	like	a
stored	 procedure	 is	 a	 facility	 close	 to	 the	 classic	 vision	 of	 programming.	 Based	 on
business	 criteria,	 many	 SQL	warehouses	 can	 be	 created	 in	 a	 system.	 For	 example,	 we
might	have	a	staging	area	between	the	source	and	the	target	system.	We	can	have	one	SQL
warehouse	for	all	the	templates	that	are	used	for	the	data	movement	from	the	source	to	the
staging	and	we	can	have	another	warehouse	composed	of	most	SQL	templates	used	for	the
movement	from	the	staging	to	the	target.	This	is	just	an	example.

In	 a	 specific	 system	where	 the	 goal	 is	 simply	 to	 move	 data	 from	 one	 system	 to
another,	 the	 data	 should	 be	moved	 in	 data	 sets	 as	much	 as	 possible.	 The	main	 type	 of
statement	responsible	for	the	data	set	flow	is	the	SQL	statement.	The	decision	to	group	the
SQL	statements	according	to	certain	criteria	is	a	good	decision	and	it	is	going	to	increase
the	level	of	organization	of	the	system.

WRITING	HORIZONTALLY	OR	VERTICALLY:
A	DECISION	TO	BE	TAKEN!
The	programmer	style	of	development	is	defined	by	a	set	of	principles	and	rules,	described
in	the	models	and	paradigms.	We	discussed	about	that	and	we	somehow	determine	the	two
alternate	styles	in	the	relational	database.	It	is	a	point	of	view.	We	can	imagine	even	more!
The	style	of	development	is	also	relative	to	the	area	of	interest	and	work.	It	is	one	thing	to
develop	mainly	in	Oracle	and	another	to	develop	mainly	in	Java.	The	style	is	influenced
by	the	technologies	used	in	our	projects,	and	the	style	is	dynamic,	it	may	change	in	time.
That	is	one	reason	for	which	I	am	optimistic	and	I	hope	some	application	developers	will
reconsider	 their	work	 in	 the	database	and	 try	 to	change	something.	Even	an	 intention	 to
change	is	a	victory	for	the	database,	in	general,	and	for	me,	in	particular.

Working	holistically	or	atomically	is	part	of	each	ones	style	of	programming	in	the
database.	 This	 decision	 and	 this	 tendency,	 to	 work	 holistic	 or	 atomic,	 is	 a	 major
component	of	the	style	of	development.	The	style	is	reflected	in	the	code,	one	may	easily
recognize	it.

If	you	see	cursors	over	cursors	for	every	operation,	and	a	variety	of	scalar	functions
or	row	triggers,	it	means	that	you	are	in	front	of	an	application	developer	working	in	the
database	in	his	own	way.	If	you	see	data	sets	manipulated	holistically	almost	everywhere
you	 notice	 the	 opposite	 style.	 This	 is	 the	 most	 important	 criteria	 for	 the	 style
determination.

Moreover,	this	is	not	the	only	one.	There	are	others	signs	that	may	indicate	one	style
or	another.	Some	of	them	are	critical	others	are	not.

One	 secondary	 characteristic	 of	 a	 style	 of	 development	 is	 the	way	we	 effectively
write.	The	aspect	of	our	code	is	an	important	component	but	has	its	degree	of	subjectivity.
That	is	why	this	topic	is	not	regulated	and	it	should	not	be	regulated,	indeed.	Still,	we	can
discuss	about	it.	We	cannot	force	people	to	write	in	a	certain	way,	but	we	can	explain	that
a	certain	writing	rule	is	better	than	another	one!	A	procedural	object,	like	a	procedure	or
function,	 can	 have	 hundreds	 of	 lines	 or	 even	 more.	 The	 most	 important	 thing	 for	 this
object	 is	 to	work	 properly.	 This	 is	 a	 trivial	 statement.	However,	 it’s	 not	 only	 that!	 The
procedure	needs	 to	 be	 intelligible.	Others	 programmers	 should	be	 able	 to	 understand	 it.
Even	us,	sometimes,	we	do	not	understand	our	code!	One	reason	is	the	way	we	write.

I	will	explain	using	a	clear	and	common	example.	In	 the	database,	we	have	many
SQL	 statements.	 Let’s	 imagine	 one	 procedure	 with	 10	 insert	 statements,	 with	 5	 update
statements,	with	7	delete	statements,	and	others	procedural	logic	in	it	apart	from	the	SQL.
I	noticed	a	bad	habit,	and	I	am	sorry	for	being	so	tough	here.	Some	programmers	write	the
SQL	statements	vertically.	This	means	that,	if	you	have	an	insert	statement,	and	you	have
20	columns,	you	will	have	between	40	and	50	lines	for	this	insert	statement.	The	vertical
writing	means	to	specify	one	column	per	line	and	effectively	write	vertically.	Imagine	that
you	have	10	insert	statements	and	you	will	have	between	400	and	500	lines	for	these	insert
statements.	 If	 you	 want	 to	 understand	 this	 logic,	 is	 almost	 impossible.	 I	 cannot
comprehend	how	these	people	understand	what	they	did,	is	beyond	my	capacities!

Let’s	see	one	example.	Imagine	you	have	one	insert	statement	in	a	procedure.	Let’s
see	the	two	ways	you	can	write	the	insert	statement.

Code	example	46	Writing	vertically

INSERT	INTO	Countries_Languages	(

CL_Id,

Country_Id,

Language_Id,

Language_Category

)VALUES	(

14,

2,

2,

‘SECONDARY’);

--	Writing	horizontally

INSERT	INTO	Countries_Languages	(CL_Id,	Country_Id,	Language_Id,	Language_Category)

VALUES	(14,	2,	2,	‘SECONDARY’);

Imagine	you	are	in	a	specific	system	where	you	have	many	insert,	update	and	delete
statements	and	you	write	everything	vertically.	Will	you	be	able	 to	understand	anything
from	the	logic?	It	will	be	extremely	difficult.	See	the	difference	in	the	example	above	and
answer	me	to	one	question.	Why	would	you	write	an	insert	statement	vertically?	Give	me
one	good	reason.	Still,	I	need	a	rational	reason!	Your	taste	only	is	not	a	good	reason	in	this
case.	For	sure,	the	intelligibility	of	the	procedure	will	be	badly	affected.

The	 insert	 statement	 is	one	 statement.	 If	 you	are	declaring	10	variables,	 you	may
add	them	in	10	lines,	each	variable	declaration	on	one	line.	Every	variable	is	distinct	and
deserves	 its	 own	 line!	 By	 contrast,	 a	 column	 in	 an	 insert	 or	 a	 value	 specified	 is	 not	 a
distinct	 component	 to	 be	 added	 in	 distinct	 lines.	 One	 insert	 statement	 is	 one	 single
statement.	 The	 purpose	 is	 to	 be	 able	 to	 understand	 the	 insert	 statement.	 For	 that,	when
writing	 horizontally,	 it	 is	much	 easier	 to	 see	 and	 understand	what	 it	 is	 about.	You	may
follow	 each	 column	 to	 each	 corresponding	 value;	 you	 may	 check	 the	 data	 types.
Eventually,	you	will	check	the	compatibility.	An	insert	statement,	to	be	intelligible,	should
be	written	mostly	horizontally.

Another	possible	reason	for	which	an	insert	statement	is	written	vertically	is	the	fact
that	 it	 is	 the	mirror	 of	 the	 tool.	 Some	 development	 tools	 generate	 by	 default	 the	 insert
statements	 vertically.	 Some	 tools	 present	 us	with	 a	 certain	way	 to	write.	 That	 does	 not
mean	we	should	write	blindly	without	thinking.	Writing	SQL	vertically	is	a	catastrophe	for
our	logic	because	it	will	make	our	code	completely	unreadable.	For	example,	in	an	insert
statement,	one	should	be	able	 to	 follow	 the	correspondences	between	every	column	and
every	associated	value.	Writing	vertically	makes	this	task	impossible.	The	tools	should	not
drive	 us	 but	 we	 should	 drive	 the	 tools.	 A	 good	 programmer	 should	 write	 in	 his	 way
according	to	his	reason	and	should	not	follow	a	certain	way	because	he	saw	it	in	a	tool.

Regarding	 the	 style	 in	 the	 database,	 I	 consider	 that	 writing	 SQL	 statements
horizontally	 is	 extremely	 important	 for	 the	 readability	 of	 our	 software.	We	 need	 to	 do
everything	 to	 be	 able	 to	 understand	 what	 we	 write.	 The	 SQL	 statement	 is	 the	 most
important	type	of	statement	and	we	need	to	do	everything	to	understand	it	exactly.	Even	if
it	seems	a	matter	of	form	and	not	substance,	it	is	important.	In	addition,	one	more	thing,
writing	horizontally	does	not	mean	writing	30	columns	in	one	line,	we	will	have	the	same
problems	 and	 the	 same	 lack	 of	 understanding.	Writing	 horizontally	 means	 writing	 that
number	of	columns	or	expressions	 that	 fill	 the	 line.	The	 important	matter	 is	 to	have	 the

proper	visibility	and	to	understand	the	code	without	the	need	to	move	to	the	right	all	the
time	with	the	cursor.

Sometimes,	the	programmers	are	generating	the	logic	from	the	tools.	They	have	an
initial	version,	and	they	update	everything	after.	I	never	did	that	but	I	know	some	people
who	do	 this.	This	 is	 another	 reason	 for	 the	existence	of	unreadable	code.	 If	 the	 logic	 is
very	simple,	you	may	leave	with	that.	If	not,	it	is	difficult	to	work	in	this	style.

Writing	vertically	may	also	show	a	kind	of	 lack	of	respect	for	 the	SQL	statement.
The	 developer	 should	 understand	 that	 the	 SQL	 statement	 is	 one	 statement,	 is	 a	 unit	 of
work.	He	needs	to	do	everything	in	his	power	to	catch	the	whole,	or	as	much	as	possible
from	it.	A	SQL	statement	can	have	hundreds	of	lines	even	in	a	horizontal	manner	anyway.

Writing	 horizontally	 is	 a	 decision	 based	 on	 reason	 and	 not	 on	 taste.	 Some
programmers	will	 say	 it	 is	 their	 taste.	Even	 if	 this	may	be	 true	 to	 a	 certain	 extent,	 they
should	 change	 this	 because	 all	 the	 arguments	 for	 intelligibility	 are	 in	 the	 favor	 of	 the
horizontal	 writing	 of	 SQL	 statements.	 Taste	 should	 be	 a	 factor	 of	 decision	 for	 a
programmer	as	long	as	it	is	not	against	reason,	don’t	you	think?

THE	SPECIFIC	SOFTWARE	APPLICATION	SHOULD	BE
IMPLEMENTED	HOLISTICALLY
A	 specific	 software	 application	 is	 very	 common	 nowadays,	 when	 most	 of	 the	 large
enterprises	have	multiple	 systems	and	databases	 that	 should	communicate	 to	each	other.
Either	 a	 continuous	 transfer	 between	operational	 systems,	 like	 a	 replication	 system	or	 a
data	migration	system,	or	a	transfer	between	a	set	of	operational	systems	and	an	analytics,
like	 in	 an	 ETL	 process,	 the	 logic	 of	 data	 transfer	 between	 systems	 is	 more	 and	 more
present	everywhere.

These	kinds	of	systems	should	be	made	by	database	developers	and	should	not	be
let	 in	 the	hands	of	pure	application	developers.	 I	know	many	people	may	disagree	with
this	 categorical	 statement.	 I	 also	 recognize	 there	 is	 a	 degree	 of	 subjectivity	 in	 this
statement.	Actually	I	can	rephrase	it	and	affirm	that	these	kind	of	systems	should	be	made
by	either	specialized	database	developers	or	by	mixed	developers	with	an	open	mind,	so
open	that	they	should	be	able	to	write	classically	in	the	user	interface	and	to	change	and
write	holistically	and	set-oriented	in	the	database.	These	application	developers,	although
being	specialized	in	languages	like	Java	or	C++,	are	able	to	understand	the	simpler	model
of	 the	database,	 they	understand	 the	set-based	approach	and	 they	are	able	 to	change	 the
way	they	write	when	switch	to	the	database.	There	are	very	good	programmers,	brilliant
minds	and	very	flexible,	that	are	able	to	do	the	switch	appropriately.

Either	 a	 specialized	database	developer	 or	 a	mixed	developer,	with	 a	 good	vision
against	 the	database,	 is	 the	proper	person	to	work	on	an	ETL,	or	a	replication	system	or
data	migration	 system	written	 in	pure	SQL.	Both	categories	of	professionals	are	able	 to
think	 holistically	 and	 SQL,	 are	 able	 to	 understand	 and	 apply	 the	 set-oriented
programming.	 These	 professionals	will	 build	 proper	 systems	 of	 that	 type,	 the	 so-called
specific	systems.	The	first	condition	for	this	kind	of	specific	system	to	work	properly	and
to	have	a	good	performance	is	to	be	written	correctly.	If	this	condition	is	satisfied,	we	are
fine.	We	are	not	necessarily	happy,	but	fine.	We	have	the	tools	to	try	to	become	happy.

By	having	 the	proper	 style	 in	a	 specific	 system,	and	adopting	 the	holistic	 style	of
development,	we	can	analyze	the	logic	in	data	sets	and	search	for	the	weaknesses.	There	is
no	such	thing	like	perfect	software	system	of	any	type.	Consequently,	despite	the	fair	style
of	programming,	we	still	may	have	performance	issues.	Now	at	least	we	know	that	we	are
on	the	right	path	and	we	know	that	we	may	start	to	look	further.	Because	the	fair	style	of
development	and	 the	 set-based	oriented	 style	of	development	 is	 the	 first	 condition	 for	 a
good	performance	for	a	data	migration	process.

The	 holistic	 style	 of	 development	 means	 using	 mostly	 SQL.	 The	 entire	 data
migration	system	will	be	composed	mainly	of	SQL	statements.	The	data	is	transferred,	as
it	 should	 be.	 Now	 the	 programmer	will	move	 to	 the	 next	 phase,	 trying	 to	 improve	 the
performance	of	the	SQL	itself!

Regarding	the	SQL	itself	and	the	performance,	there	are	so	many	possibilities	that
we	 need	 five	 books	 of	 this	 type	 to	mention	 them	 all.	 Improving	 one	 SQL	 statement	 or
improving	 certain	 logic	 composed	 of	 mainly	 SQL	 statements	 is	 a	 challenging	 task.
Without	entering	a	new	topic	now,	we	should	only	mention	some	 things	 that	have	 to	be
done.

THE	SQL	ITSELF	CAN	BE	BETTER	AND	BETTER!
First,	 when	 mentioning	 SQL,	 we	 should	 have	 a	 deeper	 understanding	 of	 the	 SQL
paradigm,	 apart	 from	 the	 language,	 apart	 from	 the	 business.	 As	 I	 already	 mentioned
several	times,	we	generally	have	two	main	goals	when	dealing	with	the	software.	We	first
need	to	implement	the	business.	For	example,	in	a	specific	system	where	we	want	to	move
some	 products	 from	 an	ERP	 system	 to	 a	 production	 system,	we	 need	 to	make	 sure	 the
products	are	moved	correctly.	We	have	ten	products	to	be	moved	from	the	ERP	system,	we
may	check	them	all	in	the	target	system,	attribute	by	attribute.	If	everything	is	accurate,	we
successfully	 complete	 the	 first	 and	 the	most	 important	 goal.	 This	 is	 the	most	 important
thing	to	be	done.	Once	this	is	completed,	we	look	further	and	question	the	performance.	If,
for	the	ten	products	we	wait	one	minute,	we	are	maybe	happy.	If,	for	the	ten	products,	we
wait	ten	minutes	we	are	unhappy	even	if	we	see	the	products	in	the	target.	The	conclusion
is	 that	 our	 second	 goal	 is	 the	 performance.	 Especially	 in	 the	 database,	 you	 can	 see	 the
performance	issues	easily	by	looking	at	the	response	times.

If	 we	 have	 a	 log	 in	 the	 data	 migration	 system,	 we	 may	 find	 the	 steps	 with	 the
performance	issues.	We	will	detect	the	place	with	the	issue.	We	need	to	take	the	SQL	or
the	 set	 of	 SQL	 statements	 separately	 and	 try	 to	 investigate.	 The	 first	 phase	 of	 the
investigation	 is	 to	 check	 if	 the	 SQL	 was	 accurate.	 Let’s	 see	 some	 of	 the	 performance
checks	that	can	be	done	against	our	SQL	in	the	database.

When	 you	 have	 to	 choose	 between	 joins	 and	 subqueries	 is	 always	 better	 to	 use
joins.	 In	 most	 of	 the	 cases,	 this	 is	 possible.	 An	 excessive	 use	 of	 subqueries	 and	 a
replacement	 of	 the	 joins	 with	 subqueries	 will	 decrease	 the	 performance	 of	 the	 SQL
statement.	In	SQL,	the	same	result	set	can	be	achieved	in	many	ways.	A	SQL	programmer
should	know	which	technique	has	a	better	performance	another	one.	Some	things	are	quite
well	known,	others	could	be	found	by	looking	at	the	execution	plan	of	the	statement.	The
decision	between	subqueries	and	joins	should	be	taken,	in	most	of	the	cases,	in	the	favor
of	joins.

The	use	of	union	should	be	made	with	caution	and	always	check	to	see	if	you	can
use	 a	 union	 all	 instead.	 As	 you	 know,	 the	 union	 operator	 will	 always	 involve	 a	 sort
operation.	This	operation	is	very	expensive.	We	should	check	the	data	sets	whenever	are
grouped	in	a	union.	We	should	check	if	there	is	a	need	for	duplicates	removal.	Sometimes
we	 know	 that	 the	 data	 sets	 in	 the	 union	 are	 distinct,	 we	 may	 know	 that	 there	 are	 no
duplicates.	If	that	is	true,	we	can	replace	the	union	with	union	all	and	we	will	have	a	much
better	performance.	One	union	may	 take	 five	minute	and	 the	union	all	 against	 the	 same
blocks	may	take	five	seconds!

Try	 to	 avoid	 the	 left	 outer	 join	 because	 the	 indexes	may	 not	work	 on	 the	 tables.
Sometimes	left	outer	join	can	be	avoided	or	replaced	with	something	else,	add	them	only
if	they	are	really	required	by	the	business	and	they	cannot	be	replaced	by	anything	else.

Use	 the	 specific	 SQL	 to	 the	 vendor	 if	 it	 has	 a	 better	 performance	 than	 a	 more
standard	SQL.	As	I	mentioned	before,	the	SQL	Server	form	of	update	is	specific	but	it	has
a	better	performance	than	the	more	general	form	with	the	subquery.	Many	SQL	statements
are	available	in	many	different	forms	and	you	should	try	to	know	if	the	performance	is	the
same	or	not.

There	are	more	and	more	things	to	be	said.	Still,	this	is	another	topic	and	deserves	a
separate	space.	The	most	important	thing	is	to	try	to	write	a	clean	SQL,	from	the	business
point	of	view	but	also	from	the	performance	point	of	view.	For	that,	the	developer	should
try	to	read	and	find	more	things	about	the	database	system	he	is	dealing	with.

The	ability	to	read	an	execution	plan	is,	of	course,	crucial	for	a	good	developer.	Not
all	the	developers	know	that.	Still,	if	we	want	to	be	able	to	improve	the	performance,	we
should	be	able	to	read	and	understand	the	execution	plan	of	a	SQL	statement.	From	what	I
noticed,	 if	you	write	clean	and	you	know	the	basics,	you	have	all	 the	chances	 to	have	a
good	performance.

There	are	many	other	things	like	indexes,	partitions,	parallelism,	materialized	views
and	other	facilities.	These	facilities	will	 improve	the	performance	and	the	developer	that
knows	all	these	is	a	true	database	developer.

PERFORMANCE,	OH	PERFORMANCE!
THIS	BOOK	IS	FOR	YOU!
Let’s	 conclude!	 Performance	 is	 the	 second	 goal	 in	 the	 database,	 the	 first	 one	 being	 the
accurate	 implementation	 of	 the	 business.	All	 the	 books	mention	 performance,	 everyone
says	that	performance	is	critical	but,	in	reality,	performance	is	generally	neglected	and	we
start	looking	into	it	when	is	too	late,	when	we	already	have	issues.	In	most	of	the	projects,
when	we	do	 the	design,	we	are	 thinking	at	 the	 immediate	goal,	 to	 implement	 the	 target
business.

We	 never	 think	 at	 performance	 from	 the	 beginning,	we	 analyze	 it	 later	when	 the
software	 application	 is	 over	 and	 already	 implemented	 in	 production.	 For	 example,	 we
have	an	 invoicing	system.	We	are	 thinking	at	 the	design,	user	 interface	design,	database
design,	we	 analyze	 and	 analyze	 the	 invoicing	 business,	 but	we	 rarely	 think	 seriously	 at
performance.	 Despite	 the	 fact	 that	 most	 of	 the	 professional	 books	 recommend	 that
performance	should	be	carefully	analyzed	from	the	beginning	we	are	only	doing	that	very
seldom.	Unfortunately,	it	is	like	with	our	health.	We	begin	to	care	about	our	health	when
we	get	sick	and	we	start	 taking	medicines,	eventually	we	change	our	 life	style	 trying	 to
improve	our	health.

I	read	many	books	about	performance	and	I	had	the	chance	to	work	in	this	section
many	times.	I	am	a	contractor	and	very	often	contractors	are	called	to	solve	performance
issues	 that	were	 there	 for	 years.	There	 are	many	 techniques	 for	 improving	 performance
and	many	features.	I	already	described	some	of	my	interventions	on	some	of	my	projects.
It	 is	a	valuable	skill	 for	a	professional	 to	be	able	 to	work	on	performance,	 to	be	able	 to
improve	 it.	 You	 need	 to	 have	 a	 distinct	 type	 of	 knowledge	 for	 that,	 apart	 from	 simply
development.	In	the	field	of	databases,	performance	is	a	separate	section	and	the	database
professionals	involved	in	performance	are	half	developers	half	DBA’s:	they	are	the	doctors
of	the	databases,	very	appreciated	and	respected.

I	read	some	magazines	about	the	Nordics	that	they	have	the	best	hearts	in	the	world.
Their	health	is	incredible	and	they	are	happy	nations.	I	can	tell	you	it	is	true	because	I	had
been	in	all	the	Nordic	countries	many	times.	I	was	amazed	of	what	I	have	seen.	First,	I	am
a	 sports	 person.	 I	 practiced	 sports	 since	 I	 was	 a	 child	 and	 continue	 to	 practice.	 I	 love
sports,	my	daughter	is	a	tennis	player,	I	am	going	to	the	gym,	I	play	squash	and	badminton
regularly,	I	like	to	run,	I	also	like	to	watch	various	sports	like	tennis	and	handball.	I	was
even	a	sports	journalist	for	a	short	period.	As	you	can	see,	sport	is	part	of	my	life.	Still,	I
have	never	imagined	that	I	will	ever	find	a	nation	dedicated	to	sports.	This	is	what	I	saw
when	 I	was	 in	 Finland.	 I	 had	 the	 same	 feeling	 in	 Sweden,	Norway	 or	Denmark.	These
nations	 are	 healthy	 nations	 firstly	 because	 they	 are	 doing	 massive	 sports.	 Everyone	 is
running,	 everyone	 is	 biking;	 the	 pools	 are	 full	 with	 people	 all	 ages,	 from	 children	 to
seniors,	I	never	imagined	I	would	generalize	in	such	a	manner	and	be	able	to	state	that	I
found	a	true	sports	nation!	This	statement	applies	to	the	Nordics.	Why	are	they	doing	so
much	 sport?	Not	 because	 they	 are	 necessarily	 great	 fans	 like	me,	many	of	 them	do	not
watch	 sports	 and	 do	 not	 care	 about	 professional	 sport.	 They	 are	 simply	 doing	 sports
because	they	do	care	about	performance.	They	care	about	their	body	and	they	know	that,
apart	from	their	normal	life,	they	need	to	do	sport	to	have	a	good	performance.	During	my
database	courses	in	the	Nordics,	I	was	at	lunch	with	my	students.	They	were	eating	only

salads;	they	were	not	eating	bread	almost	at	all,	the	entire	nation	was	on	a	diet.	The	reason
is	the	same,	performance.

You	 just	 saw	 how	 a	 nation	 is	 capable	 to	 analyze	 and	 to	 take	 into	 account	 the
performance	 in	 their	 daily	 activities.	Why	 can’t	we	do	 the	 same	 in	 our	 projects?	Going
back	 and	 speaking	 about	 the	 database,	 the	 first	 measure	 we	 should	 take	 is	 to	 write
correctly	 in	 the	database.	That	means	 effectively	 to	 stop	using	 an	 inappropriate	 style	 of
development	 in	 our	 databases,	 that	 means	 to	 stop	 killing	 the	 performance	 with	 cursors
over	cursors	and	scalar	functions	over	scalar	functions	called	everywhere,	and	structures
and	records	and	arrays	 instead	of	using	the	classic	and	native	SQL	facilities.	Looking	at
the	performance	of	our	databases	it	means,	in	the	first	place,	to	try	to	do	not	consider	SQL
as	an	additional	skill	that	can	be	achieved	easily	by	anyone	and	to	allow	more	respect	for
this	 language.	 Looking	 at	 performance	 firstly	 means	 explaining	 to	 the	 variety	 of
application	developers	working	 in	our	databases	 that	 they	should	 try	 to	 think	differently
due	to	the	simple	fact	that	they	are	in	a	distinct	environment,	the	database,	where	the	main
concept	 and	 concern	 for	 them	 is	 to	 handle	 everything	 in	 data	 sets.	 To	 explain	 to	 the
application	developers	that	there	are	no	such	things	as	good	or	superior	languages	and	bad
or	 inferior	 languages,	 that	 there	 are	 no	 absolute	 criteria	 in	 software	 development.	 In
software	development,	we	are	clearly	adopting	a	utilitarian	and	practical	thinking.

I	noticed	very	often	that,	if	we	write	correctly	from	the	beginning,	we	start	already
with	 the	 premises	 of	 a	 good	 performance.	 Which	 is	 why	 I	 insisted	 so	 much	 on	 the
necessity	 to	 start	 explaining	 the	 concepts	 of	 data	 set	 and	 the	 set-oriented	 style	 of
development	during	 the	college	years?	The	young	generation	of	programmers	should	be
aware	from	the	beginning,	before	starting	to	write	code	that	they	need	to	think	differently
in	the	database.	No	one	told	them	that	explicitly,	or	very	rarely,	and	they	are	tempted	to
write	in	the	same	manner	in	the	database.	It	is	such	a	simple	solution	but	it	may	have	very
good	 consequences!	 Let’s	 imagine	 for	 a	 moment	 that	 all	 the	 data-oriented	 software
applications	will	 be	written	 correctly	 in	 the	 databases.	 I	 can	 guarantee	 that	 it	will	 be	 a
better	world,	from	the	performance	point	of	view.	The	remaining	portion	will	be	for	true
SQL	specialists.	They	will	need	to	refine,	to	take	the	SQL	statements	and	try	to	improve
them;	they	will	replace	a	poor	syntax	with	a	better	one,	until	they	will	get	the	best	SQL.
What	will	remain?	The	DBA’s	and	the	specialized	database	specialists	will	enter	the	scene
and	they	will	start	to	add	valuable	features	for	performance,	if	this	one	will	still	suffer.	The
main	reason	for	a	poor	performance	will	be	eliminated.	Of	course,	this	will	never	happen;
I	am	not	so	naive	to	believe	that,	it	was	just	a	game	of	imagination.

The	 winner	 in	 the	 game	 of	 the	 two	 styles	 of	 development	 will	 always	 be	 the
performance.	 Choosing	 the	 proper	 style	 of	 development	 means	 to	 choose	 a	 good
performance	or	not.	This	book	is	not	to	be	considered	a	book	about	performance.	A	book
about	 performance	 is	 the	 one	 where	 various	 techniques	 are	 described	 like	 indexes,
partitioning,	materialized	views,	explaining	execution	plans,	and	gathering	statistics.	That
is	 a	 book	 about	 performance,	 but	 this	 one	 here	 is	 a	 book	 about	 how	 to	 improve
performance,	 or	 about	 how	 to	 have	 a	 good	 performance	 in	 a	 fair	 development
environment.	 All	 the	 principles	 described	 in	 this	 second	 book	 are	 to	 be	 applied	 to	 a
database	where	the	style	of	development	is	the	holistic,	set-oriented	style	of	development.
If	the	database	is	written	in	the	atomic	style	of	development	those	principles	are	useless.
Consequently,	from	this	perspective,	my	book	is	a	book	about	performance,	even	the	first

part	 of	 it.	 If	 you	 don’t	 write	 holistically	 in	 the	 database,	 and	mostly	 in	 some	 kinds	 of
databases	 like	 the	 ones	 that	 implement	 specific	 software	 applications,	 you	 choose	 the
worst	performance	you	may	have.	It	is	up	to	you	to	decide,	as	a	programmer,	as	a	manager
of	 the	project,	you	can	decide	if	you	really	care	about	 the	performance	of	your	software
application	and	let	the	developers’	work,	as	they	want	to.	The	game	is	yours:	you	should
properly	 learn	 the	 rules!	 The	 style	 of	 the	 player	 is	 always	 a	 critical	 component	 of	 the
game.	Apart	from	learning	the	rules,	 look	at	 the	style	and	choose	wisely	in	concordance
with	your	reason.	I	tried	to	offer	you	good	reasons	for	a	certain	style,	you	can	check	your
self	the	differences.	The	ball	is	in	your	hand!

A	SPECIFIC	DATA	MIGRATION	SOFTWARE
APPLICATION	CAN	BE	WRITTEN	IN	PURE
SQL	MORE	OFTEN	THAN	YOU	EXPECT!
These	are	the	last	words	before	concluding	this	final	chapter	of	my	book.	I	hope	to	be	able
to	write	another	book	that	will	continue	 this	one.	The	main	 topic	and	my	concern	 is	 the
use	of	a	proper	style	of	development	in	one	layer	or	another	of	a	software	application.	It	is
true	that	all	my	discussions	and	all	my	thoughts	were	related	to	the	particular	layer	of	the
relational	 database.	 I	 believe	 we	 can	 imagine	 other	 layers	 and	 sections	 in	 the	 field	 of
software	development.	The	way	we	write	our	code	and	our	style	of	development	should	be
a	main	concern	to	all	of	us,	programmers.	We	should	consider	this	matter	and	we	should
try	to	analyze	ourselves	and	wonder	if	we	are	using	a	proper	style	of	development	in	the
places	where	we	effectively	do	our	work.	Even	if	the	concept	of	style	of	development	is
not	clearly	defined	and	 it	has	 its	degree	of	subjectivity,	as	I	mentioned	before,	 it	 is	very
important.	I	believe	everyone	will	agree	that	our	software	applications	and	databases	are
influenced	by	our	style	of	development.	This	will	be	reflected	especially	in	the	section	of
performance	because,	after	all	and	in	the	end,	we	are	generally	able	to	build	the	software
application	but	at	what	costs?	Moreover,	when	 I	 say	at	what	costs	 I	 am	 referring	 to	 the
cost	of	development	and	to	the	cost	of	the	performance.	All	of	these	are	influenced	by	our
style	of	development.

I	believe	I	had	the	chance	to	say	my	word	in	this	matter.	Some	people	will	not	be
quite	happy	and	satisfied	with	my	ideas.	It	is	their	right	to	think	so.	I	respect	the	work	of
an	application	developer.	I	don’t	have	such	a	strong	perspective	of	the	user	interface	and
application	 development	 and	 I	 never	 had	 any	 intention	 to	 evaluate	 in	 any	 way	 their
activity	 in	 their	 classic	 fields	 and	 sections.	 On	 the	 other	 hand,	 I	 have	 a	 very	 good
perspective	 of	 the	 relational	 database;	 I	 have	 a	 very	 good	 understanding	 of	 the	 SQL
language	 and	 I	 have	 been	 very	 often	 in	 the	 position	 to	 clean	 the	 code	 written	 by
application	 developers	 in	 relational	 databases.	 That	 is	 why	 I	 strongly	 consider	 that	 the
application	developers	need	to	make	an	effort	and	understand	the	concept	of	data	set,	 to
follow	more	 the	 set-oriented	development	 inside	 the	database	and	 to	be	aware	 that	 they
need	 to	write	 their	 code	 differently	 inside	 a	 relational	 database.	With	 this,	 I	 finish	 this
topic	 and	 I	 hope	 at	 least	 some	 application	 developers	 will	 understand	 and	 act
consequently.

Apart	from	the	topic	of	the	style	of	development,	I	want	to	conclude	referring	to	my
intentions	for	my	next	book,	which	I	hope	I	will	have	the	energy	and	strength	to	complete.
As	I	mentioned	several	times	during	the	pages	of	this	book,	I	had	the	chance	to	specialize
in	 specific	 software	 systems	 written	 in	 pure	 SQL.	 I	 had	 been	 involved	 in	 replication
systems	and	data	migrations	systems	written	in	pure	SQL	and	I	strongly	believe	we	can	do
miracles	with	the	simple	SQL	language.

More	and	more	enterprises	have	a	variety	of	systems	and	the	request	for	these	types
of	specific	systems	will	 increase.	There	are	dedicated	 tools	for	 that	and	I	don’t	have	 the
knowledge	 to	 judge	 these	 tools.	What	 I	 can	 say	 again	 is	 the	 fact	 that	 you	 can	 always
consider	SQL	an	alternative.

My	plan	 is	 to	 describe	 a	 data	migration	 system	written	 in	 pure	SQL,	 considering

that	 I	 had	 the	 privilege	 to	 design	 and	 build	 one	 from	 the	 scratch.	 I	want	 to	 explain	 the
principles,	I	want	to	illustrate	the	migration	system	with	a	variety	of	examples	and	show
exactly	how	this	can	be	done.	I	want	to	show	that	using	a	simple	language	like	SQL	may
allow	you	to	have	a	consistent	product	and	to	handle	many	customers	and	even	in	various
database	systems.	I	want	to	show	you	that	the	maintenance	can	be	relatively	easy;	I	want
to	show	you	how	to	debug,	I	want	to	show	you	how	you	can	check	the	differences	if	the
migration	 interface	will	 be	 incremental,	 all	 these	with	 no	 expensive	 tool	 just	with	 pure
SQL.	I	will	show	you	that	everything	will	flow	and	that	 the	quantity	of	procedural	code
will	be	somewhere	to	five	percent	of	the	code.

The	main	advantages	of	this	system	are	performance,	portability,	and	readability	of
the	code,	naturalness,	and	simplicity.	Of	course,	 some	businesses	may	be	 in	such	a	way
that	simple	SQL	cannot	achieve	the	goal	and	something	else	may	be	required,	like	a	tool
or	 something	 else.	 However,	 very	 often,	 more	 often	 than	 you	 expect,	 the	 simple	 SQL
language	will	be	enough.

My	plan	is	to	describe	a	methodology	of	a	replication	system	written	in	pure	SQL.
This	methodology	may	be	useful	 for	 the	 software	 companies	 and	 for	various	 customers
that	may	want	to	build	such	a	system	and	they	may	decide	to	use	a	simple	solution	with
the	trivial	and	simple	SQL	language.	Of	course,	there	are	variations	between	the	vendors
like	Oracle	or	SQL	Server	or	PostgreSQL.	However,	if	you	write	SQL	oriented	you	don’t
care	so	much	about	the	differences.

With	these	final	considerations,	I	finish	this	book	and	I	hope	you’ll	enjoy	it.	I	would
be	 the	 happiest	 person	 in	 the	 world	 if	 at	 least	 one	 application	 developer	 will	 learn
something	 from	 my	 book	 or	 if	 a	 student	 will	 start	 his	 first	 project	 knowing	 that	 the
database	 is	 something	 different	 and	 he	 should	 not	 blindly	 apply	 the	 same	 principles
learned	 in	 the	University.	 In	 addition,	 if	 the	 student	will	 be	 aware	 about	 the	differences
between	the	holistic	and	the	atomic	style	of	development	from	the	University,	that	would
be	another	reason	of	great	satisfaction.

	TABLE OF CONTENTS
	Introduction and Intended Audience
	A story about table aliases, a vision about an inferior skill, how to drink wine mixed with water in France!
	Writing correctly is critical for the quality of our software
	A basic terminology
	All types of software developers!
	The same styles of development were used for many years in the user interface and in the database!
	The application developer – the main target of this book
	Database developers and students in IT universities are especially targeted too
	The two sections of the book

	Chapter 1 The concept of style
	The style of development is dynamic. We need to recognize it first!
	The most common styles of programming
	The database development starts with the table design
	Do we already start the development?
	Are we ready for SQL?

	Chapter 2 SQL - the beauty and the beast!
	How can a query language be so important for a style of development?
	What is SQL? What is not SQL?
	What about programming? Is there such a thing like database programming?
	Programming is a practical activity!
	Should we write in the database in a certain way?
	The SQL shop metaphor!
	An example of bad practice!

	Chapter 3 The holistic vision against the data
	The concept of data set
	The holistic approach versus the atomic approach – an introduction
	A different model –does this model deserve to be promoted indeed?
	Performance and portability - two advantages for the holistic approach.
	Visual development versus SQL development

	Chapter 4 What to choose: the data set or the data row?
	Choosing the level of detail: the set versus the row!
	Performance is poor. Performance completely blocked in any tentative of improvement.
	Database programming means query, query and query all the time!
	Let’s go back to the SQL shop! One more time, please!
	The use of scalar functions –a typical accessory for the atomic approach!
	Debugging is so simple! The code is much simpler and readable!
	What is a database developer nowadays?
	It’s practice time!

	Chapter 5 Data transfer paradigm, the first set of examples
	The exercises, the context, the goals, ways to illustrate the two approaches!
	Holistic versus atomic: incrementally update a target

	Chapter 6 Others atomic features used in excess
	The use of scalar functions – a challenge to the set-based approach
	A simple query!

	Chapter 7 Writing SQL versus writing procedurally, other holistic methods
	Writing SQL versus writing procedurally, another impediment! An example of update!
	Writing SQL versus writing procedurally: the power of union in the holistic approach!
	Embedded SQL versus dynamic SQL – another dilemma!
	Others holistic solutions: the temporary table, explicit or implicit like with a clause

	Chapter 8 Row triggers. When should we follow the atomic way? Some final reflections and thoughts!
	The use of row triggers: another common atomic solution used in excess
	The atomic approach should be used, whenever is necessary!
	Some final reflections and thoughts
	The concept of SQL template
	Writing horizontally or vertically: a decision to be taken!
	The specific software application should be implemented holistically
	The SQL itself can be better and better!
	Performance, oh performance! This book is for you!
	A specific data migration software application can be written in pure SQL more often than you expect!

